精英家教网 > 高中数学 > 题目详情
1.右程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为24,39,则输出的a=(  )
A.2B.3C.4D.24

分析 由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.

解答 解:由a=24,b=39,不满足a>b,
则b变为39-24=15,
由b<a,则a变为24-15=9,
由a<b,则,b=15-9=6,
由b<a,则,a=9-6=3,
由a<b,则,b=6-3=3,
由a=b=3,
则输出的a的值为3.
故选:B.

点评 本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈R,x2-mx+1=0,q:?x∈R,ex-m>0,若¬p∧q为真,则实数m的取值范围是(  )
A.[-2,2]B.(-2,0]C.(-2,0)D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2017x+log2017($\sqrt{{x^2}+1}$+x)-2017-x+2,则关于x的不等式f(3x+1)+f(x)>4的解集为(  )
A.$(-∞,-\frac{1}{4})$B.$(-\frac{1}{4},+∞)$C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若实数x,y满足2x-3≤ln(x+y+1)+ln(x-y-2),则xy=-$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在二项式(2x+a)5的展开式中,含x2项的系数等于320,则$\int_1^a{({{e^x}+2x})}dx$=(  )
A.e2-e+3B.e2+4C.e+1D.e+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax2+bx(x>0)的图象与x轴切于点(3,0).
(1)求函数f(x)的解析式;
(2)若g(x)+f(x)=-6x2+(3c+9)x,命题p:?x1,x2∈[-1,1],|g(x1)-g(x2)|>1为假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一光源P在桌面A的正上方,半径为2的球与桌面相切,且PA与球相切,小球在光源P的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是Rt△PAB,其中PA=6,则该椭圆的短轴长为(  )
A.6B.8C.$4\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为(  )
A.$\frac{1}{9}$B.-1或1C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=2cos$\frac{ωx}{2}$(sin$\frac{ωx}{2}$-$\sqrt{3}$cos$\frac{ωx}{2}$)+$\sqrt{3}$(ω>0)在区间($\frac{π}{3}$,π)上有且仅有一个零点,则实数ω的范围为($\frac{1}{3}$,1)∪($\frac{4}{3}$,3].

查看答案和解析>>

同步练习册答案