精英家教网 > 高中数学 > 题目详情
15.已知x∈R,符号[x]表示不超过x的最大整数,f(x)=$\left\{\begin{array}{l}{[x],x≤0}\\{\frac{1}{x},x>0}\end{array}\right.$,则使方程$\frac{f(x)}{x}$=m恰有三个实根的实数m的取值范围是(  )
A.($\frac{1}{2}$,$\frac{2}{3}$)B.(1,$\frac{3}{2}$)C.($\frac{4}{3}$,$\frac{3}{2}$]D.[$\frac{3}{2}$,2)

分析 作出f(x)与y=mx的函数图象,根据图象有3个交点判断m的范围.

解答 解:由$\frac{f(x)}{x}=m$得f(x)=mx(x≠0),
作出f(x)与y=mx的函数图象,

∵方程$\frac{f(x)}{x}$=m恰有三个实根,
∴y=mx与y=f(x)(x≠0)的函数图象有3个交点,
当直线y=mx过点(-1,-2)时,m=2,
当直线y=mx经过点(-2,-3时),m=$\frac{3}{2}$,
∴$\frac{3}{2}$≤m<2.
故选D.

点评 本题考查了方程的根与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设抛物线y2=8x的焦点与双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的右焦点重合,则b=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图茎叶图表示一次朗诵比赛中甲乙两位选手的得分,则下列说法错误的是(  )
A.甲乙得分的中位数相同B.乙的成绩较甲更稳定
C.甲的平均分比乙高D.乙的平均分低于其中位数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的离心率为$\sqrt{3}$,则该双曲线的渐近线方程为(  )
A.$x-\sqrt{2}y=0$B.$\sqrt{2}x-y=0$C.$\sqrt{2}x±y=0$D.$x±\sqrt{2}y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
喜欢《最强大脑》不喜欢《最强大脑》合计
男生15
女生15
合计
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
下面的临界值表仅参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.焦点在坐标轴,中心在原点的双曲线的渐近线过点(3,-4),则双曲线的离心率为$\frac{5}{3}$或$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=6x上的一点到焦点的距离是到y轴距离的2倍,则该点的横坐标为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数f(x)周期为2,且满足$f(x)=\left\{\begin{array}{l}x+a,-1≤x<0\\|{\frac{2}{5}-x}|,0≤x<1\end{array}\right.$,若$f(-\frac{5}{2})=f(\frac{9}{2})$,则f(5a)=(  )
A.$\frac{7}{16}$B.$-\frac{2}{5}$C.$\frac{11}{16}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,边长为4的正方形ABCD中,AC与BD交于点O,$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,则$\overrightarrow{AE}$•$\overrightarrow{OF}$等于(  )
A.-3B.3C.-5D.5

查看答案和解析>>

同步练习册答案