精英家教网 > 高中数学 > 题目详情
4.已知定义在R上的函数f(x)周期为2,且满足$f(x)=\left\{\begin{array}{l}x+a,-1≤x<0\\|{\frac{2}{5}-x}|,0≤x<1\end{array}\right.$,若$f(-\frac{5}{2})=f(\frac{9}{2})$,则f(5a)=(  )
A.$\frac{7}{16}$B.$-\frac{2}{5}$C.$\frac{11}{16}$D.$\frac{13}{16}$

分析 由题意,f(x)在R上周期为2的函数,即f(x+2)=f(x).则f($-\frac{5}{2}$)=f($-\frac{1}{2}$)=$-\frac{1}{2}$+a.
f($\frac{9}{2}$)=f($\frac{1}{2}$)=|$\frac{2}{5}-\frac{1}{2}$|=$\frac{1}{10}$,根据$f(-\frac{5}{2})=f(\frac{9}{2})$,求出a,即可求f(5a)的值.

解答 解:由题意,$f(x)=\left\{\begin{array}{l}x+a,-1≤x<0\\|{\frac{2}{5}-x}|,0≤x<1\end{array}\right.$,
f(x)在R上周期为2的函数,即f(x+2)=f(x).
∴f($-\frac{5}{2}$)=f($-\frac{1}{2}$)=$-\frac{1}{2}$+a.
f($\frac{9}{2}$)=f($\frac{1}{2}$)=|$\frac{2}{5}-\frac{1}{2}$|=$\frac{1}{10}$,
∵$f(-\frac{5}{2})=f(\frac{9}{2})$,即$-\frac{1}{2}$+a=$\frac{1}{10}$,
可得a=$\frac{3}{5}$
则f(5a)=f(3)=f(1)=f(-1)=-1+$\frac{3}{5}$=$-\frac{2}{5}$.
故选B

点评 本题主要考查函数周期的求解,根据条件推导f(x+T)=f(x)的形式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.己知函数f(x)=a2+x2-xlna-b(a,b∈R,a>1),e自然对数的底数.
(Ⅰ)当a=e,b=4时,求函数f(x)零点个数
(Ⅱ)若b=1,求f(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x∈R,符号[x]表示不超过x的最大整数,f(x)=$\left\{\begin{array}{l}{[x],x≤0}\\{\frac{1}{x},x>0}\end{array}\right.$,则使方程$\frac{f(x)}{x}$=m恰有三个实根的实数m的取值范围是(  )
A.($\frac{1}{2}$,$\frac{2}{3}$)B.(1,$\frac{3}{2}$)C.($\frac{4}{3}$,$\frac{3}{2}$]D.[$\frac{3}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2,|AB|=4,|F1F2|=2$\sqrt{3}$,直线y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CM|=|DN|.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若m>0,设直线AD、BC的斜率分别为k1、k2,求$\frac{k_1}{k_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={x|y=lg(x-2)},B={y|y=2x,x≥0},则(∁RA)∩B=(  )
A.(0,2)B.[0,2]C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m=(\sqrt{3}sin\frac{x}{2},-1)$,向量$\overrightarrow n=(cos\frac{x}{2},-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(1)求f(x)的单调减区间;
(2)将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求函数y=g(x)的解析式及其图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\left\{\begin{array}{l}{x^3}+e,x≤0\\ \frac{e^x}{x},x>0\end{array}$,则方程f(f(x))=$\frac{e^3}{3}$的根的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.
为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:
年龄[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受访人数56159105
支持发展
共享单车人数
4512973
(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
年龄低于35岁年龄不低于35岁合计
支持
不支持
合计
(2)若对年龄在[15,20)[20,25)的被调查人中随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为X,求随机变量X的分布列及数学期望.
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知α∈(0,$\frac{π}{2}$),cos(α+$\frac{π}{3}$)=-$\frac{2}{3}$,则cosα=$\frac{{\sqrt{15}-2}}{6}$.

查看答案和解析>>

同步练习册答案