精英家教网 > 高中数学 > 题目详情
5.设抛物线y2=8x的焦点与双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的右焦点重合,则b=$\sqrt{3}$.

分析 求出抛物线的焦点坐标,利用已知条件求出b即可.

解答 解:抛物线y2=8x的焦点(2,0)与双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的右焦点重合,可得c=2,
$\sqrt{1+{b}^{2}}=2$,解得b=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查抛物线的简单性质以及双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角 A,B,C所对的边分别为a,b,c,且满足b2+c2-a2=2bcsin(B+C).
(1)求角 A的大小;
(2)若$a=2,B=\frac{π}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z1=$\frac{m-i}{i}$(m∈R)与z2=2i的虚部相等,则复数z1对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若对任意x∈(0,π),不等式ex-e-x>asinx恒成立,则实数a的取值范围是(  )
A.[-2,2]B.(-∞,e]C.(-∞,2]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设z是复数,|z-i|≤2(i是虚数单位),则|z|的最大值是   (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设△ABC面积的大小为S,且3$\overrightarrow{AB}$•$\overrightarrow{AC}$=2S.
(1)求sinA的值;
(2)若C=$\frac{π}{4}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=16,求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C对边分别为a、b、c,a2+b2+c2=ab+bc+ca.
(1)证明△ABC是正三角形;
(2)如图,点D在边BC的延长线上,且BC=2CD,AD=$\sqrt{7}$,求sin∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知函数f(x)=a2+x2-xlna-b(a,b∈R,a>1),e自然对数的底数.
(Ⅰ)当a=e,b=4时,求函数f(x)零点个数
(Ⅱ)若b=1,求f(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x∈R,符号[x]表示不超过x的最大整数,f(x)=$\left\{\begin{array}{l}{[x],x≤0}\\{\frac{1}{x},x>0}\end{array}\right.$,则使方程$\frac{f(x)}{x}$=m恰有三个实根的实数m的取值范围是(  )
A.($\frac{1}{2}$,$\frac{2}{3}$)B.(1,$\frac{3}{2}$)C.($\frac{4}{3}$,$\frac{3}{2}$]D.[$\frac{3}{2}$,2)

查看答案和解析>>

同步练习册答案