精英家教网 > 高中数学 > 题目详情
15.在△ABC中,内角 A,B,C所对的边分别为a,b,c,且满足b2+c2-a2=2bcsin(B+C).
(1)求角 A的大小;
(2)若$a=2,B=\frac{π}{3}$,求△ABC的面积.

分析 (1)利用余弦定理即可得出.
(2)根据正弦定理与三角形面积计算公式即可得出.

解答 解:(1)∵A+B+C=π,∴sin(B+C)=sinA,∴b2+c2-a2=2bcsinA,
∴$\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=sinA$,
由余弦定理得cosA=sinA,可得tanA=1,
又∵A∈(0,π),∴$A=\frac{π}{4}$.
(2)根据正弦定理得$b=\frac{a}{sinA}•sinB=\sqrt{6}$,又$sinC=sin({A+B})=sin({\frac{π}{4}+\frac{π}{3}})=\frac{{\sqrt{6}+\sqrt{2}}}{4}$,
∴${S_{△ABC}}=\frac{1}{2}absinC=\frac{1}{2}•2•\sqrt{6}•\frac{{\sqrt{6}+\sqrt{2}}}{4}=\frac{{3+\sqrt{3}}}{2}$.

点评 本题考查了正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2cos(ωx+φ)(ω>0)是奇函数,其图象与直线y=-2的交点间的最小距离是π,则(  )
A.ω=2,φ=$\frac{π}{2}$B.ω=2,φ=πC.ω=$\frac{1}{2}$,φ=$\frac{π}{2}$D.ω=$\frac{1}{2}$,φ=$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正方形ABCD的边长为6,M在边BC上且BC=3BM,N为DC的中点,则$\overrightarrow{AM}•\overrightarrow{BN}$=(  )
A.-6B.12C.6D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四棱锥P-ABCD的底面ABCD是平行四边形,△PAB与△ABC是等腰三角形,PA⊥平面ABCD,PA=2,AD=2$\sqrt{2}$,AC⊥BA,点E是线段AB上靠近点B的一个三等分点,点F、G分别在线段PD,PC上.
(Ⅰ)证明:CD⊥AG;
(Ⅱ)若三棱锥E-BCF的体积为$\frac{1}{6}$,求$\frac{FD}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数 x,y满足$\left\{\begin{array}{l}x+y≥a\\ x-y≤a\\ y≤a\end{array}\right.({a>0})$,若z=x2+y2的最小值为 2,则 a的值为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若正方形ABCD的边长为$2,\overrightarrow{BC}=2\overrightarrow{BE},\overrightarrow{DC}=λ\overrightarrow{DF}$,若$\overrightarrow{AE}•\overrightarrow{AF}=1$,则λ的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数$f(x)=sin2ωx+2\sqrt{3}{cos^2}ωx-\sqrt{3}(ω>0)$在$[\frac{π}{2},π]$上单调递减,则ω的取值范围是(  )
A.$[\frac{1}{6},\frac{1}{4}]$B.$[\frac{1}{6},\frac{7}{12}]$C.$[\frac{1}{4},\frac{1}{2}]$D.$[0,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.
(I)求证:平面BCE⊥平面CDE;
(II)求平面BCE与平面ADEB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设抛物线y2=8x的焦点与双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的右焦点重合,则b=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案