精英家教网 > 高中数学 > 题目详情
7.若函数$f(x)=sin2ωx+2\sqrt{3}{cos^2}ωx-\sqrt{3}(ω>0)$在$[\frac{π}{2},π]$上单调递减,则ω的取值范围是(  )
A.$[\frac{1}{6},\frac{1}{4}]$B.$[\frac{1}{6},\frac{7}{12}]$C.$[\frac{1}{4},\frac{1}{2}]$D.$[0,\frac{1}{2}]$

分析 利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,结合三角函数的性质在$[\frac{π}{2},π]$上单调递减,可得ω的取值范围.

解答 解:函数$f(x)=sin2ωx+2\sqrt{3}{cos^2}ωx-\sqrt{3}(ω>0)$,
化简可得:f(x)=sin2ωx+2$\sqrt{3}$($\frac{1}{2}+\frac{1}{2}$cos2ωx)-$\sqrt{3}$
=sin2ωx+$\sqrt{3}$cos2ωx=2sin(2ωx$+\frac{π}{3}$).
∵f(x)在$[\frac{π}{2},π]$上单调递减,
∴$\left\{\begin{array}{l}{πω+\frac{π}{3}≥\frac{π}{2}+2kπ}\\{2ωπ+\frac{π}{3}≤\frac{3π}{2}+2kπ}\end{array}\right.$,
解得:$\frac{1}{6}+2k≤ω≤\frac{7}{12}+k$,
∵ω>0,
当k=0时,可得ω的取值范围为$[\frac{1}{6},\frac{7}{12}]$.
故选B.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若f(x)是定义在R上的函数,对任意的实数x,都有f(x+3)≥f(x)+3和f(x+2)≤f(x)+2,且f(1)=1,则f(2 017)的值为2017.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从1,2,3,4,5这5个数字中随机抽取3个,则所抽取的数字之和能被4整除的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角 A,B,C所对的边分别为a,b,c,且满足b2+c2-a2=2bcsin(B+C).
(1)求角 A的大小;
(2)若$a=2,B=\frac{π}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=({ax+a+2})ln({x+1})+\frac{1}{2}a{x^2}-({2+a})x+1$.
(1)当a=1时,判断f(x)的单调性;
(2)若f(x)在[0,+∞)上为单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=(  )
A.{0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数$f(x)=2sin({x+\frac{π}{6}})+1$的图象向右平移$\frac{π}{3}$个单位,再把所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得函数y=g(x)的图象,则g(x)图象的一个对称中心为(  )
A.$({\frac{π}{6},0})$B.$({\frac{π}{12},0})$C.$({\frac{π}{6},1})$D.$({\frac{π}{12},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z1=$\frac{m-i}{i}$(m∈R)与z2=2i的虚部相等,则复数z1对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C对边分别为a、b、c,a2+b2+c2=ab+bc+ca.
(1)证明△ABC是正三角形;
(2)如图,点D在边BC的延长线上,且BC=2CD,AD=$\sqrt{7}$,求sin∠BAD的值.

查看答案和解析>>

同步练习册答案