精英家教网 > 高中数学 > 题目详情
19.将函数$f(x)=2sin({x+\frac{π}{6}})+1$的图象向右平移$\frac{π}{3}$个单位,再把所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得函数y=g(x)的图象,则g(x)图象的一个对称中心为(  )
A.$({\frac{π}{6},0})$B.$({\frac{π}{12},0})$C.$({\frac{π}{6},1})$D.$({\frac{π}{12},1})$

分析 利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的图象的对称性,求得g(x)图象的一个对称中心.

解答 解:将函数$f(x)=2sin({x+\frac{π}{6}})+1$的图象向右平移$\frac{π}{3}$个单位,可得y=2sin(x-$\frac{π}{3}$+$\frac{π}{6}$)-1=2sin(x-$\frac{π}{6}$)+1的图象;
再把所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),可得y=g(x)=2sin(2x-$\frac{π}{6}$)+1的图象.
令2x-$\frac{π}{6}$=kπ,k∈Z,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,令k=0,可得g(x)图象的一个对称中心为($\frac{π}{12}$,1),
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知△ABC的三个内角A,B,C的对应边分别为a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.则使得sin2B+sin2C=msinBsinC成立的实数m的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数 x,y满足$\left\{\begin{array}{l}x+y≥a\\ x-y≤a\\ y≤a\end{array}\right.({a>0})$,若z=x2+y2的最小值为 2,则 a的值为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数$f(x)=sin2ωx+2\sqrt{3}{cos^2}ωx-\sqrt{3}(ω>0)$在$[\frac{π}{2},π]$上单调递减,则ω的取值范围是(  )
A.$[\frac{1}{6},\frac{1}{4}]$B.$[\frac{1}{6},\frac{7}{12}]$C.$[\frac{1}{4},\frac{1}{2}]$D.$[0,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线${x^2}-\frac{y^2}{b^2}=1$的一个焦点到其渐近线的距离为2,则该双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.
(I)求证:平面BCE⊥平面CDE;
(II)求平面BCE与平面ADEB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若x0是函数f(x)=log2x+2x的零点,则x0=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=21.3,b=40.7,c=ln6,则a,b,c的大小关系为(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若方程|lnx|=a有两个不等的实根x1和x2,则x1+x2的取值范围是(  )
A.(1,+∞)B.($\sqrt{2}$,+∞)C.(2,+∞)D.(0,1)

查看答案和解析>>

同步练习册答案