精英家教网 > 高中数学 > 题目详情
9.若方程|lnx|=a有两个不等的实根x1和x2,则x1+x2的取值范围是(  )
A.(1,+∞)B.($\sqrt{2}$,+∞)C.(2,+∞)D.(0,1)

分析 利用y=|lnx|的单调性判断x1,x2的范围,根据对数的运算性质得出x1x2=1,再利用基本不等式即可得出答案.

解答 解:令f(x)=|lnx|=$\left\{\begin{array}{l}{lnx,x≥1}\\{-lnx,0<x<1}\end{array}\right.$,
∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,且f(1)=0,
∵方程|lnx|=a有两个不等的实根x1和x2,不妨设x1<x2,则0<x1<1<x2
且-lnx1=lnx2=a,∴lnx1+lnx2=lnx1x2=0,∴x1x2=1,
∴x1+x2=x1+$\frac{1}{{x}_{1}}$>2,
故选C.

点评 本题考查了对数函数的图象与性质,对数的运算性质和基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.将函数$f(x)=2sin({x+\frac{π}{6}})+1$的图象向右平移$\frac{π}{3}$个单位,再把所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得函数y=g(x)的图象,则g(x)图象的一个对称中心为(  )
A.$({\frac{π}{6},0})$B.$({\frac{π}{12},0})$C.$({\frac{π}{6},1})$D.$({\frac{π}{12},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设z是复数,|z-i|≤2(i是虚数单位),则|z|的最大值是   (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C对边分别为a、b、c,a2+b2+c2=ab+bc+ca.
(1)证明△ABC是正三角形;
(2)如图,点D在边BC的延长线上,且BC=2CD,AD=$\sqrt{7}$,求sin∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设Sn是数列{an}的前n项和,2Sn+1=Sn+Sn+2(n∈N+),若a3=3,则a100=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知函数f(x)=a2+x2-xlna-b(a,b∈R,a>1),e自然对数的底数.
(Ⅰ)当a=e,b=4时,求函数f(x)零点个数
(Ⅱ)若b=1,求f(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥E-ABCD中,平面CDE⊥平面ABCD,∠DAB=∠ABC=90°,AB=BC=1,AD=ED=3,EC=2.
(1)证明:AB⊥平面BCE;
(2)求直线AE与平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某学校共3000名学生,其中高一年级900人,现用分层抽样的方式从三个年级中抽取部分学生进行心理测试,已知高一年级抽取了6人,则样本容量为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={x|y=lg(x-2)},B={y|y=2x,x≥0},则(∁RA)∩B=(  )
A.(0,2)B.[0,2]C.[1,2]D.(1,2)

查看答案和解析>>

同步练习册答案