精英家教网 > 高中数学 > 题目详情
1.如图,在四棱锥E-ABCD中,平面CDE⊥平面ABCD,∠DAB=∠ABC=90°,AB=BC=1,AD=ED=3,EC=2.
(1)证明:AB⊥平面BCE;
(2)求直线AE与平面CDE所成角的正弦值.

分析 (1)推导出EC⊥CD,从而CE⊥面ABCD,再由CE⊥AB,AB⊥BC,由此能证明AB⊥面BCE.
(2)过A作AH⊥DC,交DC于H,则AH⊥平面DCE,连结EH,则∠AEH是直线AE与平面DCE所成的平面角,由此能证明直线AE与平面CDE所成角的正弦值.

解答 证明:(1)∵∠DAB=∠ABC=90°,
∴四边形ABCD是直角梯形,
∵AB=BC=1,AD=ED=3,EC=2.
∴CD=$\sqrt{{1}^{2}+(3-1)^{2}}$=$\sqrt{5}$,
∴CE2+DC2=DE2,∴EC⊥CD,
∵面EDC⊥面ABCD,面EDC∩面ABCD=DC,
∴CE⊥面ABCD,
∴CE⊥AB,又AB⊥BC,BC∩CE=C,
∴AB⊥面BCE.
解:(2)过A作AH⊥DC,交DC于H,
则AH⊥平面DCE,连结EH,
则∠AEH是直线AE与平面DCE所成的平面角,
∵$\frac{1}{2}×DC×AH$=$\frac{AD+BC}{2}×AB-\frac{1}{2}×AB×BC$,
∴AH=$\frac{\frac{1}{2}(3+1)×1-\frac{1}{2}×1×1}{\frac{1}{2}×\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$,
AE=$\sqrt{A{B}^{2}+(C{E}^{2}+B{C}^{2})}$=$\sqrt{6}$,
∴sin∠AEH=$\frac{\sqrt{30}}{10}$,
∴直线AE与平面CDE所成角的正弦值为$\frac{\sqrt{30}}{10}$.

点评 本题考查线面垂直的证明,考查线面所成角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若x0是函数f(x)=log2x+2x的零点,则x0=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},{bn}都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列{cn}.
(1)设数列{an},{bn}分别为等差、等比数列,若a1=b1=1,a2=b3,a6=b5,求c20
(2)设{an}的首项为1,各项为正整数,bn=3n,若新数列{cn}是等差数列,求数列{cn} 的前n项和Sn
(3)设bn=qn-1(q是不小于2的正整数),c1=b1,是否存在等差数列{an},使得对任意的n∈N*,在bn与bn+1之间数列{an}的项数总是bn?若存在,请给出一个满足题意的等差数列{an};若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若方程|lnx|=a有两个不等的实根x1和x2,则x1+x2的取值范围是(  )
A.(1,+∞)B.($\sqrt{2}$,+∞)C.(2,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(-2,x),$\overrightarrow{b}$=(y,3),若$\overrightarrow{a}$∥$\overrightarrow{b}$且$\overrightarrow{a}$•$\overrightarrow{b}$=12,则x=2,y=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图茎叶图表示一次朗诵比赛中甲乙两位选手的得分,则下列说法错误的是(  )
A.甲乙得分的中位数相同B.乙的成绩较甲更稳定
C.甲的平均分比乙高D.乙的平均分低于其中位数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若?x∈R,不等式|x+a|+|x+1|>a都成立,则实数a的取值范围为(-∞,$\frac{1}{2}$ ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
喜欢《最强大脑》不喜欢《最强大脑》合计
男生15
女生15
合计
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
下面的临界值表仅参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在某大学自主招生的面试中,考生要从规定的6道科学题,4道人文题共10道题中,随机抽取3道作答,每道题答对得10分,答错或不答扣5分,已知甲、乙两名考生参加面试,甲只能答对其中的6道科学题,乙答对每道题的概率都是$\frac{2}{3}$,每个人答题正确与否互不影响.
(1)求考生甲得分X的分布列和数学期望EX;
(2)求甲,乙两人中至少有一人得分不少于15分的概率.

查看答案和解析>>

同步练习册答案