12£®ÒÑÖªÊýÁÐ{an}£¬{bn}¶¼Êǵ¥µ÷µÝÔöÊýÁУ¬Èô½«ÕâÁ½¸öÊýÁеÄÏî°´ÓÉСµ½´óµÄ˳ÐòÅųÉÒ»ÁУ¨ÏàͬµÄÏîÊÓΪһÏ£¬ÔòµÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®
£¨1£©ÉèÊýÁÐ{an}£¬{bn}·Ö±ðΪµÈ²î¡¢µÈ±ÈÊýÁУ¬Èôa1=b1=1£¬a2=b3£¬a6=b5£¬Çóc20£»
£¨2£©Éè{an}µÄÊ×ÏîΪ1£¬¸÷ÏîΪÕýÕûÊý£¬bn=3n£¬ÈôÐÂÊýÁÐ{cn}ÊǵȲîÊýÁУ¬ÇóÊýÁÐ{cn} µÄǰnÏîºÍSn£»
£¨3£©Éèbn=qn-1£¨qÊDz»Ð¡ÓÚ2µÄÕýÕûÊý£©£¬c1=b1£¬ÊÇ·ñ´æÔڵȲîÊýÁÐ{an}£¬Ê¹µÃ¶ÔÈÎÒâµÄn¡ÊN*£¬ÔÚbnÓëbn+1Ö®¼äÊýÁÐ{an}µÄÏîÊý×ÜÊÇbn£¿Èô´æÔÚ£¬Çë¸ø³öÒ»¸öÂú×ãÌâÒâµÄµÈ²îÊýÁÐ{an}£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÓÉÌâÒâµÃ£¬$\left\{\begin{array}{l}{1+d={q}^{2}}\\{1+5d={q}^{4}}\end{array}\right.$£¬½âµÃd=0»ò3£¬ÒòÊýÁÐ{an}£¬{bn}µ¥µ÷µÝÔö£¬d£¾0£¬q£¾1£¬¿ÉµÃan=3n-2£¬bn=2n-1£¬ÀûÓÃͨÏʽ¼´¿ÉµÃ³ö£®
£¨2£©ÉèµÈ²îÊýÁÐ{cn}µÄ¹«²îΪd£¬ÓÖa1£¬ÇÒbn=3n£¬ËùÒÔc1=1£¬ËùÒÔcn=dn+1-d£®ÒòΪb1=3ÊÇ{cn}ÖеÄÏËùÒÔÉèb1=cn£¬¼´d£¨n-1£©=2£®µ±n¡Ý4ʱ£¬½âµÃd=$\frac{2}{n-1}$£¼1£¬²»Âú×ã¸÷ÏîΪÕýÕûÊýµ±b1=c3=3ʱ£¬µ±b1=c2=3ʱ£¬¼´¿ÉµÃ³ö£®
£¨3£©´æÔڵȲîÊýÁÐ{an}£¬Ö»ÐèÊ×Ïîa1¡Ê£¨1£¬q£©£¬¹«²îd=q-1£®ÏÂÖ¤bnÓëbn+1Ö®¼äÊýÁÐ{an}µÄÏîÊýΪbn£®¼´Ö¤¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐ$\left\{\begin{array}{l}{{b}_{n}£¼{a}_{{b}_{1}+{b}_{2}+¡­+{b}_{n-1}+1}}\\{{b}_{n+1}£¾{a}_{{b}_{1}+{b}_{2}+¡­+{b}_{n}}}\end{array}\right.$£¬×÷²îÀûÓÃͨÏʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬
ÓÉÌâÒâµÃ£¬$\left\{\begin{array}{l}{1+d={q}^{2}}\\{1+5d={q}^{4}}\end{array}\right.$£¬½âµÃd=0»ò3£¬ÒòÊýÁÐ{an}£¬{bn}µ¥µ÷µÝÔö£¬
ËùÒÔd£¾0£¬q£¾1£¬
ËùÒÔd=3£¬q=2£¬
ËùÒÔan=3n-2£¬bn=2n-1£®¡­£¨2·Ö£©
ÒòΪa1=b1=1£¬a2=b3£¬a6=b5£¬b7£¾a20£®
¡àc20=a17=49£®¡­£¨4·Ö£©
£¨2£©ÉèµÈ²îÊýÁÐ{cn}µÄ¹«²îΪd£¬ÓÖa1£¬ÇÒbn=3n£¬
ËùÒÔc1=1£¬ËùÒÔcn=dn+1-d£®
ÒòΪb1=3ÊÇ{cn}ÖеÄÏËùÒÔÉèb1=cn£¬¼´d£¨n-1£©=2£®
µ±n¡Ý4ʱ£¬½âµÃd=$\frac{2}{n-1}$£¼1£¬²»Âú×ã¸÷ÏîΪÕýÕûÊý£»¡­£¨6·Ö£©
µ±b1=c3=3ʱ£¬d=1£¬´Ëʱcn=n£¬Ö»ÐèÈ¡an=n£¬¶øµÈ±ÈÊýÁÐ{bn}µÄÏî¶¼ÊǵȲîÊýÁÐ{an}£¬ÖеÄÏËùÒÔSn=$\frac{n£¨n+1£©}{2}$£»¡­£¨8·Ö£©
µ±b1=c2=3ʱ£¬d=2£¬´Ëʱcn=2n-1£¬Ö»ÐèÈ¡an=2n-1£¬
ÓÉ3n=2m-1£¬µÃm=$\frac{{3}^{n}+1}{2}$£¬3nÊÇÆæÊý£¬3n+1 ÊÇÕýżÊý£¬mÓÐÕýÕûÊý½â£¬
ËùÒԵȱÈÊýÁÐ{bn}µÄÏî¶¼ÊǵȲîÊýÁÐ{an}ÖеÄÏËùÒÔSn=n2£®¡­£¨10·Ö£©
×ÛÉÏËùÊö£¬ÊýÁÐ{cn}µÄǰnÏîºÍSn=$\frac{n£¨n+1£©}{2}$£¬»òSn=n2£®¡­£¨11·Ö£©
£¨3£©´æÔڵȲîÊýÁÐ{an}£¬Ö»ÐèÊ×Ïîa1¡Ê£¨1£¬q£©£¬¹«²îd=q-1¡­£¨13·Ö£©
ÏÂÖ¤bnÓëbn+1Ö®¼äÊýÁÐ{an}µÄÏîÊýΪbn£®¼´Ö¤¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐ$\left\{\begin{array}{l}{{b}_{n}£¼{a}_{{b}_{1}+{b}_{2}+¡­+{b}_{n-1}+1}}\\{{b}_{n+1}£¾{a}_{{b}_{1}+{b}_{2}+¡­+{b}_{n}}}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{{b}_{n}£¼{a}_{1+q+¡­+{q}^{n-2}+1}}\\{{b}_{n+1}£¾{a}_{1+q+¡­+{q}^{n-1}}}\end{array}\right.$³ÉÁ¢£®
ÓÉbn-${a}_{1+q+¡­+{q}^{n-2}+1}$=qn-1-a1-£¨1+q+¡­+qn-2£©£¨q-1£©=1-a1£¼0£¬
bn+1-${a}_{1+q+¡­+{q}^{n-1}}$=qn-a1-£¨1+q+¡­+qn-1-1£©£¨q-1£©=q-a1£¾0£®£®
ËùÒÔÊ×Ïîa1¡Ê£¨1£¬q£©£¬¹«²îd=q-1µÄµÈ²îÊýÁÐ{an}·ûºÏÌâÒâ¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽÇóºÍ¹«Ê½¼°ÆäÐÔÖÊ¡¢·ÖÀàÌÖÂÛ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êý$f£¨x£©=£¨{ax+a+2}£©ln£¨{x+1}£©+\frac{1}{2}a{x^2}-£¨{2+a}£©x+1$£®
£¨1£©µ±a=1ʱ£¬ÅжÏf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôf£¨x£©ÔÚ[0£¬+¡Þ£©ÉÏΪµ¥µ÷Ôöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³Ó¡Ë¢³§ÎªÁËÑо¿Ó¡Ë¢µ¥²áÊé¼®µÄ³É±¾y£¨µ¥Î»£ºÔª£©ÓëÓ¡Ë¢²áÊýx£¨µ¥Î»£ºÇ§²á£©Ö®¼äµÄ¹ØÏµ£¬ÔÚӡ֯ijÖÖÊ鼮ʱ½øÐÐÁËͳ¼Æ£¬Ïà¹ØÊý¾Ý¼ûÏÂ±í£®
Ó¡Ë¢²áÊýx£¨Ç§²á£©23458
µ¥²á³É±¾y£¨Ôª£©3.22.421.91.7
¸ù¾ÝÒÔÉÏÊý¾Ý£¬¼¼ÊõÈËÔ±·Ö±ð½èÖú¼×¡¢ÒÒÁ½ÖÖ²»Í¬µÄ»Ø¹éÄ£ÐÍ£¬µÃµ½ÁËÁ½¸ö»Ø¹é·½³Ì£¬·½³Ì¼×£º$\widehat{y}$£¨1£©=$\frac{4}{x}$+1.1£¬·½³ÌÒÒ£º$\widehat{y}$£¨2£©=$\frac{6.4}{{x}^{2}}$+1.6£®
£¨¢ñ£©ÎªÁËÆÀ¼ÛÁ½ÖÖÄ£Ð͵ÄÄâºÏЧ¹û£¬Íê³ÉÒÔÏÂÈÎÎñ£®
£¨i£©Íê³ÉÏÂ±í£¨¼ÆËã½á¹û¾«È·µ½0.1£©£»
Ó¡Ë¢²áÊýx£¨Ç§²á£©23458
µ¥²á³É±¾y£¨Ôª£©3.22.421.91.7

Ä£Ðͼ×
¹À¼ÆÖµ$\widehat{{y}_{i}}$£¨1£© 2.42.1 1.6
²ÐÖµ$\widehat{{e}_{i}}$£¨1£© 0-0.1 0.1

Ä£ÐÍÒÒ
¹À¼ÆÖµ$\widehat{{y}_{i}}$£¨2£© 2.321.9 
²ÐÖµ$\widehat{{e}_{i}}$£¨2£© 0.100 
£¨ii£©·Ö±ð¼ÆËãÄ£Ðͼ×ÓëÄ£ÐÍÒÒµÄ²Ð²îÆ½·½ºÍQ1ºÍQ2£¬²¢Í¨¹ý±È½ÏQ1£¬Q2µÄ´óС£¬ÅжÏÄĸöÄ£ÐÍÄâºÏЧ¹û¸üºÃ£®
£¨¢ò£©¸ÃÊéÉÏÊÐÖ®ºó£¬Êܵ½¹ã´ó¶ÁÕßÈÈÁÒ»¶Ó­£¬²»¾Ã±ãÈ«²¿ÊÛóÀ£¬ÓÚÊÇÓ¡Ë¢³§¾ö¶¨½øÐжþ´ÎÓ¡Ë¢£®¸ù¾ÝÊг¡µ÷²é£¬ÐÂÐèÇóÁ¿Îª10ǧ²á£¬ÈôÓ¡Ë¢³§ÒÔÿ²á5ÔªµÄ¼Û¸ñ½«Êé¼®³öÊÛ¸ø¶©»õÉÌ£¬ÊÔ¹À¼ÆÓ¡Ë¢³§¶þ´ÎÓ¡Ë¢»ñµÃµÄÀûÈ󣮣¨°´£¨¢ñ£©ÖÐÄâºÏЧ¹û½ÏºÃµÄÄ£ÐͼÆËãÓ¡Ë¢µ¥²áÊéµÄ³É±¾£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÉèzÊǸ´Êý£¬|z-i|¡Ü2£¨iÊÇÐéÊýµ¥Î»£©£¬Ôò|z|µÄ×î´óÖµÊÇ   £¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÉèÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ãa2n+1=2a2n-1Óëa2n=a2n-1+1£¬ÔòS20=2056£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢C¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬a2+b2+c2=ab+bc+ca£®
£¨1£©Ö¤Ã÷¡÷ABCÊÇÕýÈý½ÇÐΣ»
£¨2£©Èçͼ£¬µãDÔÚ±ßBCµÄÑÓ³¤ÏßÉÏ£¬ÇÒBC=2CD£¬AD=$\sqrt{7}$£¬Çósin¡ÏBADµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÉèSnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬2Sn+1=Sn+Sn+2£¨n¡ÊN+£©£¬Èôa3=3£¬Ôòa100=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚËÄÀâ×¶E-ABCDÖУ¬Æ½ÃæCDE¡ÍÆ½ÃæABCD£¬¡ÏDAB=¡ÏABC=90¡ã£¬AB=BC=1£¬AD=ED=3£¬EC=2£®
£¨1£©Ö¤Ã÷£ºAB¡ÍÆ½ÃæBCE£»
£¨2£©ÇóÖ±ÏßAEÓëÆ½ÃæCDEËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªf£¨x£©=£¨1-a£©lnx+$\frac{a}{2}$x2-x£¨a£¾0£©£®
£¨¢ñ£©µ±a=3ʱ£¬ÆäÇúÏßÔÚ£¨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ó£©Èôf£¨x£©ÔÚ£¨1£¬2£©ÓÐÁãµã£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸