精英家教网 > 高中数学 > 题目详情
3.某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表.
印刷册数x(千册)23458
单册成本y(元)3.22.421.91.7
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,方程甲:$\widehat{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\widehat{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(Ⅰ)为了评价两种模型的拟合效果,完成以下任务.
(i)完成下表(计算结果精确到0.1);
印刷册数x(千册)23458
单册成本y(元)3.22.421.91.7

模型甲
估计值$\widehat{{y}_{i}}$(1) 2.42.1 1.6
残值$\widehat{{e}_{i}}$(1) 0-0.1 0.1

模型乙
估计值$\widehat{{y}_{i}}$(2) 2.321.9 
残值$\widehat{{e}_{i}}$(2) 0.100 
(ii)分别计算模型甲与模型乙的残差平方和Q1和Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(Ⅱ)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为10千册,若印刷厂以每册5元的价格将书籍出售给订货商,试估计印刷厂二次印刷获得的利润.(按(Ⅰ)中拟合效果较好的模型计算印刷单册书的成本)

分析 (1)(i)计算对应的数值,填表即可;
(ii)计算模型甲、模型乙的残差平方和,比较即可得出结论;
(2)计算二次印刷时的成本,求出对应利润值即可.

解答 解:(1)(i)经计算,可得下表:(计算结果精确到0.1);

印刷册数x(千册)23458
单册成本y(元)3.22.421.91.7

模型甲
估计值$\widehat{{y}_{i}}$(1)3.1 2.42.11.9 1.6
残值$\widehat{{e}_{i}}$(1)0.1 0-0.1 00.1

模型乙
估计值$\widehat{{y}_{i}}$(2)3.2 2.321.91.7 
残值$\widehat{{e}_{i}}$(2) 00.100
(ii)计算模型甲的残差平方和为Q1=0.12+(-0.1)2+0.12=0.03,
模型乙的残差平方和为Q2=0.12=0.01,
∴Q1>Q2,模型乙的拟合效果更好;
(2)若二次印刷8千册,则印刷厂获利为(5-1.7)×8000=26400(元),
若二次印刷10千册,由(1)可知,单册书印刷成本为$\frac{6.4}{{10}^{2}}$+1.6=1.664(元),
故二次印刷10千册时,印刷厂利润为Y=(5-1.664)×10×1000=33360(元).

点评 本题考查了残差平方和模拟模型拟合效果的应用问题,也考查了成本与利润的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{m-{3}^{x},x≤0}\\{-{x}^{2},x>0}\end{array}\right.$给出下列两个命题,p:存在m∈(-∞,0),使得方程f(x)=0有实数解;q:当m=$\frac{1}{3}$时,f(f(1))=0,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线${x^2}-\frac{y^2}{b^2}=1$的一个焦点到其渐近线的距离为2,则该双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若x0是函数f(x)=log2x+2x的零点,则x0=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义:$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,如$|\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}|$=1×4-2×3=-2.当x∈R时,$|\begin{array}{l}{{e}^{x}}&{3}\\{1}&{2}\end{array}|$≥k恒成立,则实数k的取值范围是(  )
A.(-∞,-3]B.(-∞,-3)C.(-3,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=21.3,b=40.7,c=ln6,则a,b,c的大小关系为(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足sin2B+sin2C=sin2A+2sinBsinCsin(B+C).
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},{bn}都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列{cn}.
(1)设数列{an},{bn}分别为等差、等比数列,若a1=b1=1,a2=b3,a6=b5,求c20
(2)设{an}的首项为1,各项为正整数,bn=3n,若新数列{cn}是等差数列,求数列{cn} 的前n项和Sn
(3)设bn=qn-1(q是不小于2的正整数),c1=b1,是否存在等差数列{an},使得对任意的n∈N*,在bn与bn+1之间数列{an}的项数总是bn?若存在,请给出一个满足题意的等差数列{an};若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若?x∈R,不等式|x+a|+|x+1|>a都成立,则实数a的取值范围为(-∞,$\frac{1}{2}$ ).

查看答案和解析>>

同步练习册答案