精英家教网 > 高中数学 > 题目详情
14.若双曲线${x^2}-\frac{y^2}{b^2}=1$的一个焦点到其渐近线的距离为2,则该双曲线的离心率为$\sqrt{5}$.

分析 根据题意,设双曲线的焦点坐标为(±c,0),求出其渐近线方程,结合题意,由点到直线的距离可得$\frac{|0+bc|}{\sqrt{1+{b}^{2}}}$=2,解可得b的值,进而由双曲线的几何性质可得c的值,由双曲线的离心率公式计算可得答案.

解答 解:根据题意,双曲线${x^2}-\frac{y^2}{b^2}=1$的焦点在x轴上,设其坐标为(±c,0),
则有c=$\sqrt{1+{b}^{2}}$,
双曲线的渐近线方程为:y=±bx,即y±bx=0,
又由题意,双曲线的一个焦点到其渐近线的距离为2,则有d=$\frac{|0+bc|}{\sqrt{1+{b}^{2}}}$=b=2,
即b=2,
则c=$\sqrt{1+4}$=$\sqrt{5}$,
则其离心率e=$\frac{c}{a}$=$\sqrt{5}$;
故答案为:$\sqrt{5}$.

点评 本题考查双曲线的几何性质,关键是求出双曲线方程中b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.一条光线从点(1,-1)射出,经y轴反射后与圆(x-2)2+y2=1相交,则入射光线所在直线的斜率的取值范围为(  )
A.$[{-\frac{3}{4},0}]$B.$[{0,\frac{3}{4}}]$C.$({-\frac{3}{4},0})$D.$({0,\frac{3}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax-lnx+x2
(Ⅰ)若a=-1,求函数f(x)的极值;
(Ⅱ)若a=1,?x1∈(1,2),?x2∈(1,2),使得f(x1)-x12=mx2-$\frac{1}{3}m{x_2}$3(m≠0),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=({ax+a+2})ln({x+1})+\frac{1}{2}a{x^2}-({2+a})x+1$.
(1)当a=1时,判断f(x)的单调性;
(2)若f(x)在[0,+∞)上为单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={x^2}+\sqrt{2}(m-1)x+\frac{m}{4}$,现有一组数据(数据量较大),从中随机抽取10个,绘制所得的茎叶图如图所示,且茎叶图中的数据的平均数为2.(茎叶图中的数据均为小数,其中茎为整数部分,叶为小数部分)
(Ⅰ)现从茎叶图的数据中任取4个数据分别替换m的值,
求至少有2个数据使得函数f(x)没有零点的概率;
(Ⅱ)以频率估计概率,若从该组数据中随机抽取4个数据分别替换m的值,记使得函数f(x)没有零点的个数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数$f(x)=2sin({x+\frac{π}{6}})+1$的图象向右平移$\frac{π}{3}$个单位,再把所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得函数y=g(x)的图象,则g(x)图象的一个对称中心为(  )
A.$({\frac{π}{6},0})$B.$({\frac{π}{12},0})$C.$({\frac{π}{6},1})$D.$({\frac{π}{12},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数$z=\frac{2i}{-1+i}$,则(  )
A.z的实部为1B.|z|=2
C.z的虚部为1D.z的共轭复数为-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表.
印刷册数x(千册)23458
单册成本y(元)3.22.421.91.7
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,方程甲:$\widehat{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\widehat{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(Ⅰ)为了评价两种模型的拟合效果,完成以下任务.
(i)完成下表(计算结果精确到0.1);
印刷册数x(千册)23458
单册成本y(元)3.22.421.91.7

模型甲
估计值$\widehat{{y}_{i}}$(1) 2.42.1 1.6
残值$\widehat{{e}_{i}}$(1) 0-0.1 0.1

模型乙
估计值$\widehat{{y}_{i}}$(2) 2.321.9 
残值$\widehat{{e}_{i}}$(2) 0.100 
(ii)分别计算模型甲与模型乙的残差平方和Q1和Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(Ⅱ)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为10千册,若印刷厂以每册5元的价格将书籍出售给订货商,试估计印刷厂二次印刷获得的利润.(按(Ⅰ)中拟合效果较好的模型计算印刷单册书的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设Sn是数列{an}的前n项和,2Sn+1=Sn+Sn+2(n∈N+),若a3=3,则a100=3.

查看答案和解析>>

同步练习册答案