精英家教网 > 高中数学 > 题目详情
7.设数列{an}的首项a1=1,且满足a2n+1=2a2n-1与a2n=a2n-1+1,则S20=2056.

分析 数列{an}的首项a1=1,且满足a2n+1=2a2n-1,可得数列{a2n-1}为等比数列,a2n-1=2n-1.a2n=a2n-1+1=2n-1+1,
因此a2n-1+a2n=2n+1,即可得出.

解答 解:数列{an}的首项a1=1,且满足a2n+1=2a2n-1
可得数列{a2n-1}为等比数列,可得a2n-1=2n-1
∴a2n=a2n-1+1=2n-1+1,
∴a2n-1+a2n=2n+1,
则S20=(a1+a2)+(a3+a4)+…+(a19+a20
=21+22+…+210+10
=$\frac{2({2}^{10}-1)}{2-1}$+10=2056.
故答案为:2056.

点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、分组求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图所示,等腰梯形ABCD的底角 A等于60°,直角梯形 ADEF所在的平面垂直于平面ABCD,∠EDA=90°,且ED=AD=2AB=2AF.
(1)证明:平面ABE⊥平面EBD;
(2)若三棱锥 A-BDE的外接球的体积为$\frac{{8\sqrt{2}π}}{3}$,求三棱锥 A-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义:$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,如$|\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}|$=1×4-2×3=-2.当x∈R时,$|\begin{array}{l}{{e}^{x}}&{3}\\{1}&{2}\end{array}|$≥k恒成立,则实数k的取值范围是(  )
A.(-∞,-3]B.(-∞,-3)C.(-3,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足sin2B+sin2C=sin2A+2sinBsinCsin(B+C).
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某高级中学高一、高二、高三年级的学生人数分别为600人、700人、700人,为了解不同年级学生的眼睛近视情况,现用分层抽样的方法抽取了容量为100的样本,则高三年级应抽取的学生人数为35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},{bn}都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列{cn}.
(1)设数列{an},{bn}分别为等差、等比数列,若a1=b1=1,a2=b3,a6=b5,求c20
(2)设{an}的首项为1,各项为正整数,bn=3n,若新数列{cn}是等差数列,求数列{cn} 的前n项和Sn
(3)设bn=qn-1(q是不小于2的正整数),c1=b1,是否存在等差数列{an},使得对任意的n∈N*,在bn与bn+1之间数列{an}的项数总是bn?若存在,请给出一个满足题意的等差数列{an};若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|$lo{g}_{\frac{1}{2}}$(x-1)>1},B={x|x2-2x-3>0},则“x∈A”是“x∈B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(-2,x),$\overrightarrow{b}$=(y,3),若$\overrightarrow{a}$∥$\overrightarrow{b}$且$\overrightarrow{a}$•$\overrightarrow{b}$=12,则x=2,y=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)是定义在R上的偶函数,其导函数为f′(x),当x<0时,3f(x)+xf′(x)<0恒成立,则下列结论正确的是(  )
A.f(1)<2016f($\root{3}{2016}$)<2017f($\root{3}{2017}$)B.2017f($\root{3}{2017}$)<f(1)<2016f($\root{3}{2016}$)
C.2016f($\root{3}{2016}$)<f(1)<2017f($\root{3}{2017}$)D.2017f($\root{3}{2017}$)<2016f($\root{3}{2016}$)<f(1)

查看答案和解析>>

同步练习册答案