精英家教网 > 高中数学 > 题目详情
2.某高级中学高一、高二、高三年级的学生人数分别为600人、700人、700人,为了解不同年级学生的眼睛近视情况,现用分层抽样的方法抽取了容量为100的样本,则高三年级应抽取的学生人数为35.

分析 先求出抽样比,由此能求出高三年级应抽取的学生人数.

解答 解:抽样比f=$\frac{100}{600+700+700}$=$\frac{1}{20}$,
∴高三年级应抽取的学生人数为:700×$\frac{1}{20}$=35.
故答案为:35.

点评 本题考查分层抽样的应用,是基础题,解题时要认真审题,注意分层抽样性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=alnx+x2-(a+2)x恰有两个零点,则实数a的取值范围是(  )
A.(-1,+∞)B.(-2,0)C.(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校高二文科100名学生参加了语数英学科竞赛,年级为了解这些学生语文和数学成绩的情况,将100名学生的语文和数学成绩统计如表:
语文
及格
数学13m5
12n9
及格10147
(I)若数学成绩的优秀率为35%,现利用随机抽样从数学成绩“优秀”的学生中抽取1名学生,求该生语文成绩为“及格”的概率;
(II)在语文成绩为“良”的学生中,已知m≥10,n≥10,求数学成绩“优”比“良”的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足$\left\{\begin{array}{l}{2x-y-2≥0}\\{x+y-1≤0}\\{y+1≥0}\end{array}\right.$,z=mx+y的最大值为3,则实数m的值是(  )
A.-2B.3C.8D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面
ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.
(Ⅰ)证明:平面ABE⊥平面EBD;
(Ⅱ)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的角的余弦值为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an}的首项a1=1,且满足a2n+1=2a2n-1与a2n=a2n-1+1,则S20=2056.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是边长为2的等边三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面BDM.
(1)求直线PC与平面BDM所成角的正弦值;
(2)求平面BDM与平面PAD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.实数x,y满足约束条件$\left\{\begin{array}{l}{y-2x≤0}\\{2x+y≤6}\\{y≥\frac{1}{2}}\end{array}\right.$,则2x+$\frac{1}{y}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若复数z满足iz=1+i,则z的共轭复数$\overline{z}$在复平面内所对应点的坐标为(  )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

同步练习册答案