分析 利用正弦定理将角化边得出m=$\frac{{b}^{2}+{c}^{2}}{bc}$,根据面积公式得出a2=$\frac{6bcsinA}{\sqrt{3}}$,代入余弦定理即可得出m关于A的式子,利用三角恒等变换求出m的最值.
解答 解:∵sin2B+sin2C=msinBsinC,
∴b2+c2=bcm,
∴m=$\frac{{b}^{2}+{c}^{2}}{bc}$,
∵${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$=$\frac{1}{2}$bcsinA,
∴a2=$\frac{6bcsinA}{\sqrt{3}}$,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{m}{2}$-$\frac{{a}^{2}}{2bc}$=$\frac{m}{2}$-$\sqrt{3}$sinA,
∴m=2cosA+2$\sqrt{3}$sinA=4sin(A+$\frac{π}{6}$),
∴当sin(A+$\frac{π}{6}$)=1即A=$\frac{π}{3}$时,m取得最大值4.
故答案为4.
点评 本题考查了正弦定理,余弦定理在三角形中的应用,三角恒等变换,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{3}{4},0}]$ | B. | $[{0,\frac{3}{4}}]$ | C. | $({-\frac{3}{4},0})$ | D. | $({0,\frac{3}{4}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{π}{6},0})$ | B. | $({\frac{π}{12},0})$ | C. | $({\frac{π}{6},1})$ | D. | $({\frac{π}{12},1})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com