精英家教网 > 高中数学 > 题目详情
13.若x,y满足$\left\{\begin{array}{l}{x+y≤4}\\{y-2x+2≤0}\\{y≥0}\end{array}\right.$,若z=x+2y,则z的最大值是(  )
A.1B.4C.6D.8

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式组$\left\{\begin{array}{l}{x+y≤4}\\{y-2x+2≤0}\\{y≥0}\end{array}\right.$对应的平面区域如图(阴影部分);
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z经过点A时,
直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,此时z最大;
由$\left\{\begin{array}{l}{x+y=4}\\{y-2x+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
代入目标函数z=x+2y得z的最大值是2+2×2=6.
故选:C.

点评 本题主要考查线性规划的应用问题,利用图象平行可以求目标函数的最值,数形结合法是解线性规划问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某理财公司有两种理财产品A和B.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品A产品B(其中p、q>0)
投资结果获利40%不赔不赚亏损20%
概  率$\frac{1}{3}$$\frac{1}{2}$$\frac{1}{6}$
投资结果获利20%不赔不赚亏损10%
概  率p$\frac{1}{3}$
(Ⅰ)已知甲、乙两人分别选择了产品A和产品B进行投资,如果一年后他们中至少有一人获利的概率大于$\frac{3}{5}$,求p的取值范围;
(Ⅱ)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品A和产品B之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“m≤-$\frac{1}{2}$”是“?x>0,使得$\frac{x}{2}$+$\frac{1}{2x}$-$\frac{3}{2}$>m是真命题”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$,将f(x)的图象向右平移$\frac{π}{6}$个单位,再向上平移1个单位,得到y=g(x)的图象.若对任意实数x,都有g(a-x)=g(a+x)成立,则$g(a+\frac{π}{4})$=(  )
A.$1+\frac{{\sqrt{2}}}{2}$B.1C.$1-\frac{{\sqrt{2}}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|2x>1},B={x||x|<3},则A∩B=(  )
A.(-3,0)B.(-3,3)C.(0,3)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2cos(ωx+φ)(ω>0)是奇函数,其图象与直线y=-2的交点间的最小距离是π,则(  )
A.ω=2,φ=$\frac{π}{2}$B.ω=2,φ=πC.ω=$\frac{1}{2}$,φ=$\frac{π}{2}$D.ω=$\frac{1}{2}$,φ=$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,给出下列四个结论
①若A>B>C,则sinA>sinB>sinC
②等式c=acosB+bcosA一定成立
③$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$
④若($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)•$\overrightarrow{BC}$=0,且$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{1}{2}$,则△ABC为等边三角形
以上结论正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC的三个内角A,B,C的对应边分别为a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.则使得sin2B+sin2C=msinBsinC成立的实数m的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数 x,y满足$\left\{\begin{array}{l}x+y≥a\\ x-y≤a\\ y≤a\end{array}\right.({a>0})$,若z=x2+y2的最小值为 2,则 a的值为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案