| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①由正弦定理进行判断,
②由正弦定理,可得,a=2rsinA,b=2rsinB,c=2rsinC,再由诱导公式和两角和的正弦公式,即可证得,
③通过正弦定理与合分比定理即可判断它的正误.
④利用单位向量的定义及向量的数量积为0两向量垂直,得到等腰三角形;利用向量的数量积求出三角形的夹角,得到非等边三角形.
解答 解:①A>B>C,则a>b>c,由正弦定理得则sinA>sinB>sinC;故①正确,
②由正弦定理,$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2r,(r为△ABC的外接圆的半径),
则a=2rsinA,b=2rsinB,c=2rsinC,
c=2rsinC=2rsin(A+B)=2r(sinAcosB+cosAsinB)
=2rsinAcosB+2rsinBcosA=acosB+bcosA;故②正确,
③由正弦定理以及合分比定理可知$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$,正确,
④:$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$,$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$分别是$\overrightarrow{AB}$、$\overrightarrow{AC}$方向的单位向量,
向量$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$在∠BAC的平分线上,
由($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)•$\overrightarrow{BC}$=0知,AB=AC,
由且$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{1}{2}$,可得∠CAB=120°,
∴△ABC为等腰非等边三角形,故④不正确,
故选:C
点评 本题主要考查了正弦定理的运用,解三角形问题,三角函数基本性质.单位向量的定义;向量垂直的充要条件;向量数量积的应用,考查了推理和归纳的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<2} | B. | {x|-1<x<3} | C. | {x|-1<x<0} | D. | {x|2<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{3}{4},0}]$ | B. | $[{0,\frac{3}{4}}]$ | C. | $({-\frac{3}{4},0})$ | D. | $({0,\frac{3}{4}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com