精英家教网 > 高中数学 > 题目详情
15.若数列{an},{bn}满足a1=b1=1,bn+1=-an,an+1=3an+2bn,n∈N*.则a2017-a2016=22017

分析 数列{an},{bn}满足a1=b1=1,bn+1=-an,an+1=3an+2bn,n∈N*.可得an+1=3an-2an-1.变形为:an+1-an=2(an-an-1),利用等比数列的通项公式即可得出.

解答 解:数列{an},{bn}满足a1=b1=1,bn+1=-an,an+1=3an+2bn,n∈N*
∴an+1=3an-2an-1
变形为:an+1-an=2(an-an-1),
又a2=3a1+2a1=5.
∴数列{an+1-an}是等比数列,首项为4,公比为2.
则a2017-a2016=4×22015=22017
故答案为:22017

点评 本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a=(sinθ,1)$,$\overrightarrow b=(-sinθ,0)$,$\overrightarrow c=(cosθ,-1)$,且$(2\overrightarrow a-\overrightarrow b)∥\overrightarrow c$,则sin2θ等于$-\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校在自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185],得到的频率分布直方图如图所示:
(1)求第3,4,5组的频率;
(2)为了能选拨最优秀的学生,该校决定在笔试成绩高的第组用分层抽样法抽取6名学生进入第二轮面试,则第3,4,5组每组个抽取多少名学生进入第二轮面试?
(3)第(2)问的前提下,学校决定在这6名学生中随机抽取2名学生接受考官甲的面试,求:第4组至少有一名学生被考官甲面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某理财公司有两种理财产品A和B.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品A产品B(其中p、q>0)
投资结果获利40%不赔不赚亏损20%
概  率$\frac{1}{3}$$\frac{1}{2}$$\frac{1}{6}$
投资结果获利20%不赔不赚亏损10%
概  率p$\frac{1}{3}$
(Ⅰ)已知甲、乙两人分别选择了产品A和产品B进行投资,如果一年后他们中至少有一人获利的概率大于$\frac{3}{5}$,求p的取值范围;
(Ⅱ)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品A和产品B之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四边形ABEF是正方形,且平面ABEF⊥平面ABCD,M为AF的中点,
(I)求证:AC⊥BM;
(2)求异面直线CE与BM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正方形ABCD的边长为2,$\overrightarrow{AB}$=a,$\overrightarrow{BC}$=b,$\overrightarrow{AC}$=c,则|a+b+c|=4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直三棱柱ABC-A1B1C1中,△ABC是正三角形,E是棱BB1的中点.
(Ⅰ)求证:平面AEC1⊥平面AA1C1C;
(Ⅱ)若AA1=AB=1,求点E到平面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“m≤-$\frac{1}{2}$”是“?x>0,使得$\frac{x}{2}$+$\frac{1}{2x}$-$\frac{3}{2}$>m是真命题”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,给出下列四个结论
①若A>B>C,则sinA>sinB>sinC
②等式c=acosB+bcosA一定成立
③$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$
④若($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)•$\overrightarrow{BC}$=0,且$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{1}{2}$,则△ABC为等边三角形
以上结论正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案