精英家教网 > 高中数学 > 题目详情
12.已知集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=(  )
A.{0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

分析 由二次函数的值域求法,运用列举法化简集合B,再由交集的定义,即可得到所求.

解答 解:集合A={-1,0,1},
B={y|y=x2,x∈A}={0,1},
则A∩B={0,1},
故选:A.

点评 本题考查集合的运算,主要是交集的求法,注意运用列举法和二次函数的值域,以及集合中元素的互异性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图,A,B,C,D为平面四边形ABCD的四个内角,若A+C=180°,AB=6,BC=4,CD=5,AD=5,则四边形ABCD面积是10$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四棱锥P-ABCD的底面ABCD是平行四边形,△PAB与△ABC是等腰三角形,PA⊥平面ABCD,PA=2,AD=2$\sqrt{2}$,AC⊥BA,点E是线段AB上靠近点B的一个三等分点,点F、G分别在线段PD,PC上.
(Ⅰ)证明:CD⊥AG;
(Ⅱ)若三棱锥E-BCF的体积为$\frac{1}{6}$,求$\frac{FD}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若正方形ABCD的边长为$2,\overrightarrow{BC}=2\overrightarrow{BE},\overrightarrow{DC}=λ\overrightarrow{DF}$,若$\overrightarrow{AE}•\overrightarrow{AF}=1$,则λ的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数$f(x)=sin2ωx+2\sqrt{3}{cos^2}ωx-\sqrt{3}(ω>0)$在$[\frac{π}{2},π]$上单调递减,则ω的取值范围是(  )
A.$[\frac{1}{6},\frac{1}{4}]$B.$[\frac{1}{6},\frac{7}{12}]$C.$[\frac{1}{4},\frac{1}{2}]$D.$[0,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+$\sqrt{2}(m-1)x+\frac{m}{4}$,现有一组数据,绘制得到茎叶图,且茎叶图中的数据的平均数为2.(茎叶图中的数据均为小数,其中茎为整数部分,叶为小数部分)
(Ⅰ)求a的值;
(Ⅱ)现从茎叶图小于3的数据中任取2个数据分别替换m的值,求恰有1个数据使得函数f(x)没有零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.
(I)求证:平面BCE⊥平面CDE;
(II)求平面BCE与平面ADEB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=(x+5)(x2+x+a)的图象关于点(-2,0)对称,设关于x的不等式f′(x+b)<f′(x)的解集为M,若(1,2)⊆M,则实数b的取值范围是[-6,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式组$\left\{\begin{array}{l}{x≥2}\\{x+y≥6}\\{x-2y≤0}\end{array}\right.$,所表示的平面区域为T,若直线mx-y+m+1=0与T有公共点,实数m的取值范围是(  )
A.($\frac{1}{5}$,+∞)B.[$\frac{1}{5}$,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案