精英家教网 > 高中数学 > 题目详情
如果函数的导函数的图像如图所示,给出下列判断:

① 函数在区间内单调递增;
②函数在区间内单调递减;
③函数在区间内单调递增;
④当时,函数有极大值;
⑤当时,函数有极大值;
则上述判断中正确的是                .
③⑤

试题分析:观察导函数的图像可得,当时,,而当时,,所以的单调递增区间为,单调递减区间为,所以③正确,①②错误;由单调递增,在单调递减,所以当时,函数有极大值,所以⑤正确,由单调递增,所以不是极值点,故④错误,综上可知③⑤正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数)的最小正周期为
(1)求函数的单调增区间;
(2)将函数的图像向左平移个单位,再向上平移个单位,得到函数的图像.求在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=sin(-2x+)+,x∈R.
(1)求函数f(x)的最小正周期和单调增区间.
(2)函数f(x)的图象可以由函数y=sin 2x(x∈R)的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的最大值为,最小值为.
(1)求的值;
(2)已知函数,当时求自变量x的集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的最小正周期和单调递增区间;
(2)已知三边长,且,的面积.求角的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数的部分图象如图所示。

(1)求的最小正周期及解析式;
(2)设,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和点恰好是函数的图象的相邻的对称轴和对称中心,则的表达式可以是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知角的终边经过点,函数的图像的相邻两条对称轴之间的距离等于,则的值为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义运算a※b为a※b=如1※2=1,则函数f(x)=sinx※cosx的值域为    .

查看答案和解析>>

同步练习册答案