精英家教网 > 高中数学 > 题目详情
已知函数
(1)求的最小正周期和单调递增区间;
(2)已知三边长,且,的面积.求角的值.
(1),;(2)或a=5,b=8.

试题分析:(2)由函数的结构形式可得,应用正弦的和差的展开式公式,以及余弦的二倍角逆运算公式,将函数化简,再通过应用角和差的逆运算公式,将函数化简,即可求得最小正周期,和单调递增区间.
(2)在三角形中,根据(Ⅰ)的结论,求出角C.又由已知面积、c边长这三个条件即可解三角形,及求出的值.本小题在解关于的方程组时要用到整体的思想.
试题解析:(Ⅰ)



,
函数的递增区间是
(2)或a=5,b=8
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)求的最小正周期;
(2)求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的最小正周期;
(2)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量为常数且),函数上的最大值为
(1)求实数的值;
(2)把函数的图象向右平移个单位,可得函数的图象,若上为增函数,求取最大值时的单调增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

知函数,则是(   )
A.最小正周期为的奇函数B.最小正周期为的奇函数
C.最小正周期为的偶函数D.最小正周期为的偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果函数的导函数的图像如图所示,给出下列判断:

① 函数在区间内单调递增;
②函数在区间内单调递减;
③函数在区间内单调递增;
④当时,函数有极大值;
⑤当时,函数有极大值;
则上述判断中正确的是                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的图象如图所示,则(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为(,),求f(θ)的值;
(2)若点P(x,y)为平面区域Ω: 上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的值域为          .

查看答案和解析>>

同步练习册答案