精英家教网 > 高中数学 > 题目详情
12.方程$\sqrt{{{({x-2})}^2}+{y^2}}=\frac{{|{3x-4y+2}|}}{5}$表示的曲线为(  )
A.抛物线B.椭圆C.双曲线D.直线

分析 根据两点间距离公式与点到直线的距离公式,可得动点到点F(2,0)的距离等于点P到直线3x-4y+2=0的距离,再根据抛物线的定义判定可得答案.

解答 解:设P(x,y),由方程$\sqrt{{{({x-2})}^2}+{y^2}}=\frac{{|{3x-4y+2}|}}{5}$得:
点P到点F(2,0)的距离等于点P到直线3x-4y+2=0的距离,
∵点F不在直线3x-4y+2=0上,由抛物线的定义得:曲线为抛物线.
故选:A.

点评 本题考查了抛物线的定义,特别要注意条件:点不在直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知{an}为等差数列,且an≠0,公差d≠0.
(Ⅰ)证明:$\frac{{C}_{2}^{0}}{{a}_{1}}$-$\frac{{C}_{2}^{1}}{{a}_{2}}$+$\frac{{C}_{2}^{2}}{{a}_{3}}$=$\frac{2{d}^{2}}{{a}_{1}{a}_{2}{a}_{3}}$
(Ⅱ)根据下面几个等式:$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$=$\frac{d}{{a}_{1}{a}_{2}}$;$\frac{{C}_{2}^{0}}{{a}_{1}}$-$\frac{{C}_{2}^{1}}{{a}_{2}}$+$\frac{{C}_{2}^{2}}{{a}_{3}}$=$\frac{2{d}^{2}}{{a}_{1}{a}_{2}{a}_{3}}$;$\frac{{C}_{3}^{0}}{{a}_{1}}$-$\frac{{C}_{3}^{1}}{{a}_{2}}$+$\frac{{C}_{3}^{2}}{{a}_{3}}$-$\frac{{C}_{3}^{3}}{{a}_{4}}$=$\frac{6{d}^{3}}{{a}_{1}{a}_{2}{a}_{3}{a}_{4}}$

;$\frac{{C}_{4}^{0}}{{a}_{1}}$-$\frac{{C}_{4}^{1}}{{a}_{2}}$+$\frac{{C}_{4}^{2}}{{a}_{3}}$-$\frac{{C}_{4}^{3}}{{a}_{4}}$+$\frac{{C}_{4}^{4}}{{a}_{5}}$=$\frac{24{d}^{4}}{{a}_{1}{a}_{2}{a}_{3}{a}_{4}{a}_{5}}$,…
试归纳出更一般的结论,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在正方体ABCD-A1B1C1D1中,AA1=a,E,F分别是BC,DC的中点,则异面直线AD1与EF所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\sqrt{3}sin2ωx-cos2ωx$(其中ω∈(0,1)),若f(x)的图象经过点$(\frac{π}{6},0)$,则f(x)在区间[0,π]上的单调递增区间为$[{0,\frac{2π}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式$\frac{3x}{2x-1}≤2$的解集为$({-∞,\frac{1}{2}})∪[{2,+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面四边形ABCD中,AD=1,CD=2,AC=$\sqrt{7}$.
(1)求cos∠CAD的值;
(2)若cos∠BAD=$\frac{\sqrt{7}}{14}$,sin$∠CBA=\frac{\sqrt{21}}{6}$,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,内角A,B,C所对的边分别为a,b,c,$\sqrt{3}$sinB-cosB=1,a=2.
(1)求角B的大小;
(2)若b2=ac,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$y=\sqrt{-{x^2}-2x+8}$的定义域为A,值域为B,则A∪B=[-4,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合M={x|x<0,x∈R},N={x|x2+x-2=0,x∈R},则M∩N=(  )
A.ϕB.{-2}C.{1}D.{-2,1}

查看答案和解析>>

同步练习册答案