精英家教网 > 高中数学 > 题目详情
10.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如下表:
xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(Ⅰ)请求出上表中的xl,x2,x3,并直接写出函数f(x)的解析式.
(Ⅱ)将f(x)的图象沿x釉向右平移$\frac{2}{3}$个单位得到函数g(x),若函数g(x)在x∈[0,m](其中m∈(2,4))上的值域为[-$\sqrt{3}$,$\sqrt{3}$],且此时其图象的最高点和最低点分别为P,Q,求$\overrightarrow{OQ}$与$\overrightarrow{QP}$夹角θ的大小.

分析 (Ⅰ)由条件利用五点法作图,求得ω、φ的值,再结合表格中的数据可得函数f(x)的解析式,从而求得表中的xl,x2,x3
(Ⅱ)由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,可得P、Q的坐标,再利用两个向量的数量积的定义、两个向量的数量积公式求得$\overrightarrow{OQ}$与$\overrightarrow{QP}$夹角θ的大小.

解答 解:(Ⅰ)由题意可得ω•$\frac{1}{3}$+φ=$\frac{π}{2}$,ω•$\frac{7}{3}$+φ=$\frac{3π}{2}$,∴ω=$\frac{π}{2}$,φ=$\frac{π}{3}$,再结合表格中的数据,
可得函数f(x)=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{3}$).
再根据$\frac{π}{2}$x1+$\frac{π}{3}$=0,$\frac{π}{2}$x2+$\frac{π}{3}$=π,$\frac{π}{2}$x3+$\frac{π}{3}$=2π,求得xl =-$\frac{2}{3}$,x2 =$\frac{4}{3}$,x3,=$\frac{10}{3}$;
(Ⅱ)将f(x)的图象沿x釉向右平移$\frac{2}{3}$个单位得到函数g(x)=$\sqrt{3}$sin[$\frac{π}{2}$(x-$\frac{2π}{3}$)+$\frac{π}{3}$]=$\sqrt{3}$sin$\frac{π}{2}$x的图象,
若函数g(x)在x∈[0,m](其中m∈(2,4))上的值域为[-$\sqrt{3}$,$\sqrt{3}$],
且此时其图象的最高点和最低点分别为P(1,$\sqrt{3}$)、Q(3,-$\sqrt{3}$),∴$\overrightarrow{OQ}$=(3,-$\sqrt{3}$)、$\overrightarrow{QP}$=(-2,2$\sqrt{3}$).
设$\overrightarrow{OQ}$与$\overrightarrow{QP}$夹角θ的大小为θ,则cosθ=$\frac{\overrightarrow{OQ}•\overrightarrow{QP}}{|\overrightarrow{OQ}|•|\overrightarrow{QP}|}$=$\frac{-6-6}{\sqrt{12}•\sqrt{4+12}}$=-$\frac{\sqrt{3}}{2}$,∴θ=$\frac{5π}{6}$.

点评 本题主要考查五点法作图,函数y=Asin(ωx+φ)的图象变换规律,用数量积表示两个向量的夹角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若椭圆短轴的两个端点和长轴的一个端点恰好是一个正三角形的三个顶点,则该椭圆的离心率为(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若关于x的不等式组$\left\{\begin{array}{l}{\frac{3}{4}{x}^{2}-3x+4≥a}\\{\frac{3}{4}{x}^{2}-3x+4≤b}\end{array}\right.$的解集为[a,b],求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{$\frac{{n}^{2}}{{2}^{n}}$}(n=1,2,…),则数列中的最大项为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在直角三角形ABC中,∠C=$\frac{π}{2}$,AB=2,AC=1,若$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB}$,则$\overrightarrow{CD}•\overrightarrow{CB}$=(  )
A.$\frac{9}{2}$B.5C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知全集U=R,集合M={x|-1≤x≤3}和N={x|x=2k-1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,椭圆C:$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)的上顶点到焦点的距离为2,椭圆上的点到焦点的最远距离为2+$\sqrt{3}$.
(1)求椭圆的方程.
(2)设P(M,0)是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)当k=1时,|AB|=$\frac{8}{5}$$\sqrt{2}$,求M的值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)满足f(x-y)=$\frac{f(x)}{f(y)}$,f(x)≠0,且x>0时,f(x)>1,已知f(4)=16.
(1)求f(0)和f(2)的值;
(2)求使不等式f(2x-3)f(2-3x)≤4成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列1+$\frac{1}{{2}^{2}}$,1-$\frac{3}{{4}^{2}}$,1+$\frac{5}{{6}^{2}}$,1-$\frac{7}{{8}^{2}}$…的通项an=1+(-1)n+1•$\frac{2n-1}{(2n)^{2}}$.

查看答案和解析>>

同步练习册答案