| A. | $\frac{9}{2}$ | B. | 5 | C. | 6 | D. | 9 |
分析 直角三角形中的边角关系求得BC、BD,∠CBD的值,利用余弦定理求得CD、cos∠BCD 的值,再根据两个向量的数量积的定义求得$\overrightarrow{CD}•\overrightarrow{CB}$=CD•CB•cos∠BCD 的值.
解答
解:在直角三角形ABC中,∠C=$\frac{π}{2}$,AB=2,AC=1,若$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB}$,
则AD=3,∠ABC=$\frac{π}{6}$,∠CBD=$\frac{5π}{6}$,∴BD=1,CB=$\sqrt{{AB}^{2}{-AC}^{2}}$=$\sqrt{3}$.
△BCD中,由余弦定理可得CD2=BD2+BC2-2BD•BC•cos$\frac{5π}{6}$=3+1-2×1×$\sqrt{3}$×(-$\frac{\sqrt{3}}{2}$)=7,∴CD=$\sqrt{7}$.
由cos∠BCD=$\frac{{CD}^{2}{+BC}^{2}{-BD}^{2}}{2CD•BC}$=$\frac{3\sqrt{21}}{14}$.
则$\overrightarrow{CD}•\overrightarrow{CB}$=CD•CB•cos∠BCD=$\sqrt{7}$×$\sqrt{3}$×$\frac{3\sqrt{21}}{14}$=$\frac{9}{2}$,
故选:A.
点评 本题主要考查直角三角形中的边角关系,余弦定理的应用,两个向量的数量积的定义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| Asin(ωx+φ)+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{17}{4}$ | B. | $\frac{7}{2}$ | C. | $\frac{25}{4}$ | D. | $\frac{27}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com