精英家教网 > 高中数学 > 题目详情
11.已知A={x|x2-x-6=0},B={x|ax-a2=0},若B∩A≠∅,则a的值为a=-2或a=3或a=0.

分析 求出集合的等价条件,根据集合的基本运算进行求解即可.

解答 解:A={x|x2-x-6=0}={-2,3},
若a=0,则B={x|ax-a2=0}=(-∞,+∞),此时满足B∩A≠∅,
若a≠0,则B={x|ax-a2=0}={x|x=a}={a},
若B∩A≠∅,则a=-2或a=3,
综上a=-2或a=3或a=0,
故答案为:a=-2或a=3或a=0.

点评 本题主要考查集合的基本运算,求出集合的等价条件,根据集合的基本关系进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=1oga(x-1)+a(a>0且a≠1)经过点(2,3).
(I)求函数f(x)的解析式;
(Ⅱ)令h(x)=f(x+1)-3,若不等式[h(x)+2]2≤h(x2)+m+2对于任意的x∈[1,3]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.当x>$\frac{1}{2}$时,求函数y=x+$\frac{8}{2x-1}$的最小值,并求出函数取得最小值时实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合M={x|-2<x<4},N={x|x+a-1>0}.
(1)若M∪N={x|x>-2},求实数a的取值范围;
(2)若x∈M是x∈N的充分非必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知ex≥ax+1,对?x≥0恒成立,求a的取值范围;
(2)已知e-f(x)=1-e-x,0<x<m,求证f(x)<$\frac{m}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若椭圆短轴的两个端点和长轴的一个端点恰好是一个正三角形的三个顶点,则该椭圆的离心率为(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知tanα=-2,求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=(m-1)x2+(m-3)x+(m-1),m取什么实数时,函数图象与x轴,
(1)没有公共点;
(2)只有一个公共点;
(3)有两个不同的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在直角三角形ABC中,∠C=$\frac{π}{2}$,AB=2,AC=1,若$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB}$,则$\overrightarrow{CD}•\overrightarrow{CB}$=(  )
A.$\frac{9}{2}$B.5C.6D.9

查看答案和解析>>

同步练习册答案