精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2-xlnx+2,
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若存在区间[a,b]⊆[
12
,+∞)
,使f(x)在[a,b]上的值域是[k(a+2),k(b+2)],求k的取值范围.
分析:(Ⅰ)已知函数f(x)=x2-xlnx+2,对f(x)进行求导,利用导数求函数的单调区间;
(Ⅱ)要求存在区间,使f(x)在[a,b]上的值域是[k(a+2),k(b+2)],将其转化为f(x)=k(x+2)在[
1
2
,+∞)上至少有两个不同的正根,再利用导数求出k的取值范围;
解答:解:(Ⅰ)令g(x)=f′(x)=2x-lnx+1(x>0),则g′(x)=2-
1
x
=
2x-1
x
,(x>0)
令g′(x)=0,得x=
1
2

当0<x<
1
2
时,g′(x)<0,g(x)为减函数;
当x≥
1
2
时,g′(x)≥0,g(x)为增函数;
所以g(x)在(0,
1
2
)单调递减,在[
1
2
,+∞)单调递增,
则g(x)的最小值为g(
1
2
)=ln2>0,
所以f′(x)=g(x)≥g(
1
2
)>0,
所以f(x)的单调递增区间是(0,+∞).
(Ⅱ)由(Ⅰ)得f(x)在区间[a,b]⊆[
1
2
,+∞)递增,
∵f(x)在[a,b]上的值域是[k(a+2),k(b+2)],
所以f(a)=k(a+2),f(b)=k(b+2),
1
2
≤a<b,
则f(x)=k(x+2)在[
1
2
,+∞)上至少有两个不同的正根,
k=
f(x)
x+2
,令F(x)=
f(x)
x+2
=
x2-xlnx+2
x+2
(x≥
1
2
)

求导得,F′(x)=
x2+3x-2lnx-4
(x+2)2
(x≥
1
2
),
令G(x)=x2+3x-2lnx-4(x≥
1
2

则G′(x)=2x+3-
2
x
=
(2x-1)(x+2)
x
≥0

所以G(x)在[
1
2
,+∞)递增,G(
1
2
)<0,G(1)=0,
当x∈[
1
2
,1]时,G(x)<0,∴F′(x)<0,
当x∈[1,+∞]时,G(x)>0,∴F′(x)>0,
所以F(x)在[
1
2
,1)上递减,在(1,+∞)上递增,
∴F(1)<k≤F(
1
2
),
∴k∈(1,
9+2ln2
10
];
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,利用了转化的思想,此题是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案