精英家教网 > 高中数学 > 题目详情

如图,长方体中点.

(1)求证:
(2)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;
(3)若二面角的大小为,求的长.

(1)详见解析;(2)存在,且;(3)的长为.

解析试题分析:(1)以为原点,的方向为轴、轴、轴的正方向建立空间直角坐标系,并设,利用空间向量法证明,从而达到证明;(2)设点,求出 平面,利用平面转化为,利用向量坐标运算求出知,从而确定点的坐标,最终得到的长;(3)设,利用空间向量法求出二面角的余弦值的表达式,再结合二面角这一条件求出的值,从而确定的长度.
试题解析:(1)以为原点,的方向为轴、轴、轴的正方向建立空间直角坐标系,
,则


(2)假设在棱上存在一点,使得平面,此时
有设平面的法向量为
平面,得
,得平面的一个法向量为
要使平面,只要,即有,由此得,解得,即
平面
存在点,满足平面,此时
(3)连接,由长方体,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

右图为一组合体,其底面为正方形,平面,且

(Ⅰ)求证:平面
(Ⅱ)求四棱锥的体积;
(Ⅲ)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱锥中,底面是平行四边形,平面,垂足为上且的中点,四面体的体积为.

(1)求二面角的正切值;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使异面直线所成的角为,若存在,确定点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱中,已知平面,且

(1)求证:;
(2)在棱BC上取一点E,使得∥平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图长方体中,底面是正方形,的中点,是棱上任意一点.

⑴求证:
⑵如果,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,,分别为的中点.

(1)求二面角的余弦值;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是等边三角形,,将沿折叠到的位置,使得

(1)求证:
(2)若分别是,的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.

(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.

查看答案和解析>>

同步练习册答案