精英家教网 > 高中数学 > 题目详情

如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.

(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.

(1)证明过程详见解析;(2)二面角的余弦值为;(3).

解析试题分析:本题考查空间两条直线的位置关系、二面角、点到平面的距离等基础知识,考查运用传统几何法,也可以运用空间向量法求解,突出考查空间想象能力和计算能力.第一问,根据线面平行的判定定理得到平面,所以垂直于面内的任意线;第二问,法一:先找出二面角的平面角,取的中点,因为,所以,由三垂线定理得,所以得到二面角的平面角为,由已知得,在中用余弦定理求,在中求边长,最后在即是二面角的余弦值.法二:用向量法,建立空间直角坐标系,设出点坐标,因为直线与直线所成的角为,利用夹角公式,先得到点坐标,再求出平面的法向量,所以求的夹角的余弦,并判断夹角为锐角,所以余弦值为正值;第三问,先找线段的中点到平面的距离,利用线面垂直的判定定理,得到即是,用等面积法求,所以点到平面的距离是点到平面的距离的两倍.
试题解析:方法1:(1)证明:∵,∴平面,∴.(2分)
(2)取的中点,连.∵,∴,∴平面

,交的延长线于,连接
由三垂线定理得,∴为二面角的平面角.
∵直线与直线所成的角为
∴在中,
中,
中,
中,
中,∵,∴
故二面角的余弦值为.(8分)
(3)作.∵平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,长方体中点.

(1)求证:
(2)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;
(3)若二面角的大小为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平行四边形中,,以为折线,把折起,使平面平面,连结.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,点分别为的中点.

(1)证明:平面
(2)平面MNC与平面MAC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知矩形中,,将矩形沿对角线折起,使移到点,且在平面上的射影恰好在上.

(1)求证:
(2)求证:平面平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于

(1)求证:⊥EF;
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,点D是AB的中点,

求证:(1); (2)平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN

(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小

查看答案和解析>>

同步练习册答案