精英家教网 > 高中数学 > 题目详情

如图长方体中,底面是正方形,的中点,是棱上任意一点.

⑴求证:
⑵如果,求的长.

(1)证明见解析;(2)

解析试题分析:(1)要证线线垂直,一般可先证线面垂直,这个平面要包含其中一条直线,本题中有许多垂直关系,如,而平面,因此有平面正好是平面内的直线,问题得证;(2)我们采取空间问题平面化,所有条件都可在矩形内,利用平面几何知识解题,由于,则有,这两个三角形中,有,又,这时可求出,从而求出的长.
试题解析:(1)是正方形,∴,又长方体的侧棱平面,∴,
,故有平面,又,∴.        7分

(2)在长方体中,是矩形,由,得,∴,从而,∴,又底面正方形的边长为2,故,又,∴,从而.        14分
说明:用空间向量知识求解相应给分.
考点:(1)空间两直线垂直;(2)求线段长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是直角梯形,平面分别为的中点,.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面ABCD,底面ABCD是菱形,.

(1)求证:平面PAC;
(2)若,求所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中点.

(1)求证:
(2)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;
(3)若二面角的大小为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正方形ADEF与梯形ABCD所在平面互相垂直,,点M在线段EC上且不与E,C重合.

(Ⅰ)当点M是EC中点时,求证:平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面
(2)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知矩形中,,将矩形沿对角线折起,使移到点,且在平面上的射影恰好在上.

(1)求证:
(2)求证:平面平面
(3)求二面角的余弦值.

查看答案和解析>>

同步练习册答案