【题目】设函数
的导函数为
.若不等式
对任意实数x恒成立,则称函数
是“超导函数”.
(1)请举一个“超导函数” 的例子,并加以证明;
(2)若函数
与
都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数
是“超导函数”;
(3)若函数
是“超导函数”且方程
无实根,
(e为自然对数的底数),判断方程
的实数根的个数并说明理由.
【答案】(1)见解析.
(2)见解析.
(3)见解析.
【解析】分析:(1)根据定义举任何常数都可以;(2)∵
,∴
,即证
-
在R上成立即可;(3)构造函数
,因为
是“超导函数”, ∴
对任意实数
恒成立,而方程
无实根,故
恒成立,所以
在
上单调递减, 故方程
等价于
,即
,
设
,分析函数单调性结合零点定理即可得出结论.
详解:
(1)举例:函数
是“超导函数”,
因为
,
,满足
对任意实数
恒成立,故
是“超导函数”.
注:答案不唯一,必须有证明过程才能给分,无证明过程的不给分.
(2)∵
,∴
,
∴![]()
因为函数
与
都是“超导函数”,所以不等式
与
对任意实数
都恒成立,故
,
,①
而
与
一个在
上单调递增,另一个在
上单调递减,故
,②
由①②得
对任意实数
都恒成立,所以函数
是“超导函数”.
(3)∵
,所以方程
可化为
,
设函数
,
,则原方程即为
,③
因为
是“超导函数”, ∴
对任意实数
成立,
而方程
无实根,故
恒成立,所以
在
上单调递减,
故方程③等价于
,即
,
设
,
,则
在
上恒成立,
故
在
上单调递增,
而
,
,且函数
的图象在
上连续不断,
故
在
上有且仅有一个零点,从而原方程有且仅有唯一实数根.
科目:高中数学 来源: 题型:
【题目】已知正项数列{an} 为等比数列,等差数列{bn} 的前n 项和为Sn (n∈N* ),且满足:S13=208,S9﹣S7=41,a1=b2,a3=b3.
(1)求数列{an},{bn} 的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn;
(3)设
,是否存在正整数m,使得cm·cm+1·cm+2+8=3(cm+cm+1+cm+2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.已知曲线
上的点
对应的参数
,射线
与曲线
交于点
.
(Ⅰ)求曲线
,
的标准方程;
(Ⅱ)若点
,
在曲线
上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:
![]()
(Ⅰ)求此活动中各公园幸运之星的人数;
(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
![]()
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
附临界值表及公式:
,其中![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标系xoy中,椭圆
的离心率为
,过点
.
(1)求椭圆C的方程;
(2)已知点P(2,1),直线
与椭圆C相交于A,B两点,且线段AB被直线OP平分.
①求直线
的斜率;②若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了巩固全国文明城市创建成果,今年吉安市开展了拆除违章搭建铁皮棚专项整治行为.为了了解市民对此项工作的“支持”与“反对”态度,随机从存在违章搭建的户主中抽取了男性、女性共
名进行调查,调查结果如下:
支持 | 反对 | 合计 | |
男性 |
|
|
|
女性 |
|
|
|
合计 |
|
|
|
(1)根据以上数据,判断是否有
的把握认为对此项工作的“支持”与“反对”态度与“性别”有关;
(2)现从参与调查的女户主中按分层抽样的方法抽取
人进行调查,分别求出所抽取的
人中持“支持”和“反对”态度的人数;
(3)现从(2)中所抽取的
人中,再随机抽取
人赠送小品,求恰好抽到
人持“支持”态度的概率?
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
分别是椭圆C:
的左、右焦点,过点
作
轴的垂线,交椭圆
的上半部分于点
,过点
作
的垂线交直线
于点
.
![]()
(1)如果点
的坐标为(4,4),求椭圆
的方程;
(2)试判断直线
与椭圆
的公共点个数,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cos x,C2:y=sin (2x+
),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线C2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com