分析 推导出f(x)的对称中心为($\frac{1}{2}$,1),从而f(1-x)+f(x)=2,由此能求出f($\frac{1}{n}}$)+f(${\frac{2}{n}}$)+f(${\frac{3}{n}}$)+…+f(${\frac{n-1}{n}}$)的值.
解答 解:f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$的对称中心为($\frac{1}{2}$,1),
∴f(1-x)+f(x)=2,
∴f($\frac{1}{n}}$)+f(${\frac{2}{n}}$)+f(${\frac{3}{n}}$)+…+f(${\frac{n-1}{n}}$)=2×$\frac{n-1}{2}$=n-1.
故答案为:n-1.
点评 本题考查函数值的求法,是基础题,解题时要认真题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=18 B=$\frac{π}{6}$ A=$\frac{2π}{3}$ | B. | a=60 c=48 C=$\frac{2π}{3}$ | ||
| C. | a=3 b=6 A=$\frac{π}{6}$ | D. | a=14 b=15 A=$\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [${\frac{1}{2}$,2) | B. | [1,4] | C. | [${\frac{1}{4}$,4) | D. | [${\frac{1}{2}$,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=b b=a | B. | c=b b=a a=c | C. | b=a a=b | D. | a=c c=b b=a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com