精英家教网 > 高中数学 > 题目详情
3.已知点M(x0,y0)在圆C:x2+y2=4上运动,点N(4,0),点P(x,y)为线段MN的中点,
(Ⅰ)求点P(x,y)的轨迹方程;
(Ⅱ)求点P(x,y)到直线3x+4y-26=0的距离的最大值和最小值.

分析 (Ⅰ)用x和y表示出M的坐标代入圆的方程即可求得P的轨迹方程.
(Ⅱ)利用点到直线的距离求得圆心到直线的距离,进而利用圆心到直线的距离加或减半径即可求得最大和最小值.

解答 解:(Ⅰ)∵点P(x,y)是MN的中点,
∴x0=2x-4,y0=2y,
将用x,y表示的x0,y0代入到x02+y02=4中得(x-2)2+y2=1.
此式即为所求轨迹方程.
(Ⅱ)由(Ⅰ)知点P的轨迹是以Q(2,0)为圆心,以1为半径的圆.
点Q到直线3x+4y-26=0的距离d=$\frac{|6-26|}{\sqrt{9+16}}$=4.
故点P到直线3x+4y-26=0的距离的最大值为4+1=5,最小值为4-1=3.

点评 本题主要考查了直线与圆的方程的应用.解决直线与圆的方程问题,一般是看圆心到直线的距离,利用数形结合的思想来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.下列命题中
①函数f(x)=($\frac{1}{3}$)x的递减区间是(-∞,+∞)
②已知函数f(x)的定义域为(0,1),则函数f(x+1)的定义域为(1,2);
③已知(x,y)映射f下的象是(x+y,x-y),那么(4,2)在f下的原象是(3,1).
其中正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(1+2i)(3-4i)(-2-i)=-20-15i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)计算:${log_5}35+2{log_{\frac{1}{2}}}\sqrt{2}-{log_5}\frac{1}{50}-{log_5}14$;
(2)$设{3^a}={4^b}=36,求\frac{2}{a}+\frac{1}{b}的值$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在下列命题中,
①“α=$\frac{π}{2}$”是“sinα=1”的充要条件;  
②($\frac{{x}^{3}}{2}$+$\frac{1}{x}$)4的展开式中的常数项为2; 
③设随机变量ξ~N(0,1),若P(ξ≥1)=p,则P(-1<ξ<0)=$\frac{1}{2}$-p.
则其中所有正确命题的号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在半径为2,圆心角为变量的扇形OAB内作一内切圆P,再在扇形内作一个与扇形两半径相切并与圆P外切的小圆Q,设圆P与圆Q的半径之积为y.
(1)按下列要求写出函数关系式:
①设∠AOB=2θ(0<θ<$\frac{π}{2}}$),将y表示成θ的函数;
②设圆P的半径x(0<x<1),将y表示成x的函数.
(2)请你选用(1)中的一个函数关系式,求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),经研究发现:任何一个三次函数都有对称中心,且对称中心为(-$\frac{b}{3a}$,f(-$\frac{b}{3a}$)).若f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,则f($\frac{1}{n}}$)+f(${\frac{2}{n}}$)+f(${\frac{3}{n}}$)+…+f(${\frac{n-1}{n}}$)=n-1.(n≥2且n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\sqrt{{x}^{2}-2}$的单调增区间是$[\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3-3x2-k有三个不同的零点,则实数k的取值范围是(  )
A.(-4,0)B.[-4,0)C.(-∞,-4)D.(0,+∞)

查看答案和解析>>

同步练习册答案