精英家教网 > 高中数学 > 题目详情
20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点A(2,0)
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l经过点(1,0)与椭圆交于B,C(不与A重合)两点.
(i)若△ABC的面积为$\frac{\sqrt{13}}{4}$,求直线l的方程;
(ii)若AB与AC的斜率之和为3,求直线l的方程.

分析 (Ⅰ)由椭圆的性质可知:a=2,为e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{6}}{3}$,求得b,即可求得椭圆的方程;
(Ⅱ)由题意可得直线l的斜率存在且不为0,设直线方程x=my+1,代入椭圆方程,由韦达定理求得y1+y2=$\frac{-2m}{{m}^{2}+3}$,y1•y2=$\frac{-3}{{m}^{2}+3}$,
(i)利用三角形的面积公式S△ABC=$\frac{1}{2}$丨y1-y2丨=$\frac{1}{2}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{\sqrt{13}}{4}$,代入即可求得直线l的方程;
(ii)利用斜率公式分别求得kAC=$\frac{{y}_{1}}{{x}_{1}-2}$,kAB=$\frac{{y}_{2}}{{x}_{2}-2}$,由$\frac{{y}_{1}}{{x}_{1}-2}$+$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{y}_{1}}{m{y}_{1}-1}$+$\frac{{y}_{2}}{m{y}_{2}-1}$=3,即可求得m的值,求得直线l的方程.

解答 解:(Ⅰ)椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦点在x轴上,经过点A(2,0),
∴a=2,
由椭圆离心率为e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{6}}{3}$,解得:b2=$\frac{4}{3}$,
∴椭圆的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{\frac{4}{3}}=1$,
(Ⅱ)(i)由题意可得直线l的斜率存在且不为0,
故设直线l的方程为x=my+1,(m≠0),B(x1,y1),C(x2,y2),
∴$\left\{\begin{array}{l}{x=my+1}\\{{x}^{2}+3{y}^{2}=4}\end{array}\right.$,整理得:(m2+3)y2+2my-3=0,
由△=4m2+12(m2+3)=16m2+36>0恒成立,
则y1+y2=$\frac{-2m}{{m}^{2}+3}$,y1•y2=$\frac{-3}{{m}^{2}+3}$,
∴△ABC的面积S△ABC=$\frac{1}{2}$丨y1-y2丨=$\frac{1}{2}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{1}{2}$×$\frac{\sqrt{16{m}^{2}+36}}{{m}^{2}+3}$=$\frac{\sqrt{13}}{4}$,
整理得:13m4+14m2-27=0,解得:m=±1,
直线l的方程x±my-1=0;
(ii)由kAC=$\frac{{y}_{1}}{{x}_{1}-2}$,kAB=$\frac{{y}_{2}}{{x}_{2}-2}$,
由题意可得:kAC+kAB=3,
∴$\frac{{y}_{1}}{{x}_{1}-2}$+$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{y}_{1}}{m{y}_{1}-1}$+$\frac{{y}_{2}}{m{y}_{2}-1}$=$\frac{2m{y}_{1}{y}_{2}-({y}_{1}+{y}_{2})}{{m}^{2}{y}_{1}{y}_{2}-m({y}_{1}+{y}_{2})+1}$=-$\frac{4}{3}$m=3,
∴m=-$\frac{9}{4}$,
∴直线l的方程4x+9y-4=0.

点评 本题考查椭圆的标准方程及几何性质,考查直线与椭圆的位置关系,韦达定理,三角形的面积公式及直线的斜率公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知圆锥的底面半径r=3,圆锥的高h=4,则该圆锥的表面积等于(  )
A.12πB.15πC.21πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)计算:${log_5}35+2{log_{\frac{1}{2}}}\sqrt{2}-{log_5}\frac{1}{50}-{log_5}14$;
(2)$设{3^a}={4^b}=36,求\frac{2}{a}+\frac{1}{b}的值$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在半径为2,圆心角为变量的扇形OAB内作一内切圆P,再在扇形内作一个与扇形两半径相切并与圆P外切的小圆Q,设圆P与圆Q的半径之积为y.
(1)按下列要求写出函数关系式:
①设∠AOB=2θ(0<θ<$\frac{π}{2}}$),将y表示成θ的函数;
②设圆P的半径x(0<x<1),将y表示成x的函数.
(2)请你选用(1)中的一个函数关系式,求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),经研究发现:任何一个三次函数都有对称中心,且对称中心为(-$\frac{b}{3a}$,f(-$\frac{b}{3a}$)).若f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,则f($\frac{1}{n}}$)+f(${\frac{2}{n}}$)+f(${\frac{3}{n}}$)+…+f(${\frac{n-1}{n}}$)=n-1.(n≥2且n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.把函数y=32x+1图象向右平移3个单位,然后图象上所有点的横坐标缩短到原来的$\frac{1}{3}$(纵坐标不变),再向左平移3个单位,最后,纵坐标扩大为原来的2倍(横坐标不变)得到的图象的解析式是2•36x+13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\sqrt{{x}^{2}-2}$的单调增区间是$[\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P为椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1上任意一点,F1、F2是椭圆的两个焦点,则下列关于“|PF1|•|PF2|的最大值和最小值”的说法中,正确的结论是(  )
A.有最大值$\sqrt{5}$+1和最小值4B.有最大值5和最小值4
C.有最大值5和最小值$\sqrt{5}$-1D.无最大值,最小值4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一组数据按从小到大顺序排列为1,2,4,x,6,9这组数据的中位数为5,那么这组数据的众数为(  )
A.4B.5C.5.5D.6

查看答案和解析>>

同步练习册答案