| A. | [${\frac{1}{2}$,2) | B. | [1,4] | C. | [${\frac{1}{4}$,4) | D. | [${\frac{1}{2}$,4) |
分析 由已知写出分段函数g(x),求出两段函数的零点,由每一段函数的零点在其定义域内列不等式组求得a的范围,进一步得到z=2a的取值范围.
解答 解:由f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,得
g(x)=f(x)-2x=$\left\{\begin{array}{l}{-x+2,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$,
而方程-x+2=0的解为2,方程x2+3x+2=0的解为-1或-2,
∴$\left\{\begin{array}{l}a<2\\-1≤a\\-2≤a\end{array}\right.$,解得-1≤a≤2,
∴z=2a的取值范围是$[{\frac{1}{2},4})$.
故选:D.
点评 本题考查函数零点判定定理,考查分段函数的应用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,$\frac{3}{2}$) | B. | [-$\frac{1}{2}$,$\frac{3}{2}$] | C. | (-$\frac{3}{2}$,$\frac{1}{2}$) | D. | [-$\frac{3}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{17}$ | B. | $\frac{9}{19}$ | C. | $\frac{10}{21}$ | D. | $\frac{11}{23}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com