精英家教网 > 高中数学 > 题目详情
1.在R上定义运算?:x?y=x(1-y),若不等式(x-a)?(x+a)<1对于任意实数x均成立,则a的取值范围为(  )
A.(-$\frac{1}{2}$,$\frac{3}{2}$)B.[-$\frac{1}{2}$,$\frac{3}{2}$]C.(-$\frac{3}{2}$,$\frac{1}{2}$)D.[-$\frac{3}{2}$,$\frac{1}{2}$]

分析 根据新定义的运算法则化简,转化为二次函数,分离参数求解.

解答 解:由题意:新定义x?y=x(1-y),那么:(x-a)?(x+a)=(x-a)(1-x-a)
∵不等式(x-a)?(x+a)<1对于任意实数x均成立,即(x-a)(1-x-a)<1对任意实数x均成立,
化简得:x2-x>a2-a-1.
∵(x2-x)min=$-\frac{1}{4}$,
∴只需a2-a-1≤-$\frac{1}{4}$即可.
解得:$-\frac{1}{2}≤a≤\frac{3}{2}$,
所以a的取值范围为[-$\frac{1}{2}$,$\frac{3}{2}$].
故选B.

点评 本题考查了新定义的运算法则,看懂运算法则的关系,转化为熟悉的函数求解.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数y=$\sqrt{{{log}_3}({2x-1})}$的定义域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知P为双曲线$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上的动点,M为圆(x+5)2+y2=1上动点,N为圆(x-5)2+y2=4上的动点,则|PM|-|PN|的最小值、最大值分别为(  )
A.4、8B.3、9C.2、10D.1、11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+mx+n的图象过点(1,2),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.
(1)求f(x)与g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在[一1.1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(1,3),\overrightarrow b=(-2,m)$,若对于任意的t∈R恒有$\overrightarrow a$与t•$\overrightarrow a+2\overrightarrow b$平行,则m的值为(  )
A.$\frac{2}{3}$B.6C.-6D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.根据下列条件确定△ABC有两个解的是(  )
A.a=18  B=$\frac{π}{6}$   A=$\frac{2π}{3}$B.a=60  c=48  C=$\frac{2π}{3}$
C.a=3   b=6     A=$\frac{π}{6}$D.a=14  b=15  A=$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{2}^{x}+m}{{2}^{x}-1}$为奇函数.
(1)求实数m的值;
(2)用定义证明函数f(x)在区间(0,+∞)上为单调减函数;
(3)若关于x的不等式f(x)+a<0对区间[1,3]上的任意实数x都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,函数g(x)=f(x)-2x恰有三个不同的零点,则z=2a的取值范围是(  )
A.[${\frac{1}{2}$,2)B.[1,4]C.[${\frac{1}{4}$,4)D.[${\frac{1}{2}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,ABCDEF为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.
(Ⅰ)证明直线BC∥EF;
(Ⅱ)求棱锥F-OBED的体积.

查看答案和解析>>

同步练习册答案