精英家教网 > 高中数学 > 题目详情
3.函数y=$\sqrt{{{log}_3}({2x-1})}$的定义域为[1,+∞).

分析 由根式内部的代数式大于等于0,求解对数不等式得答案.

解答 解:由log3(2x-1)≥0,得2x-1≥1,即x≥1.
∴函数y=$\sqrt{{{log}_3}({2x-1})}$的定义域为[1,+∞).
故答案为:[1,+∞).

点评 本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知全集U=R,集合A={x|x<-1或x≥3},B={x|x≤2},C={x|x≤a}.求:
(1)A∪B;    
(2)A∩(∁UB);     
(3)若A∪C=A,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若定义在R上的偶函数y=f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,函数g(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{x}(x≤0)}\end{array}\right.$,则?x∈[-4,4],方程f(x)=g(x)不同解的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\left\{{\begin{array}{l}{{2^x}-1},{x>0}\\{-{x^2}-2x},{x≤0}\end{array}}$,若方程f(x)-m=0有三个实根,则m的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.集合A={x|y=$\frac{12}{x+3}$,x∈N,y∈Z},则A={0,1,3,9}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是增函数,且f(3)=0,则使得f(x+1)>0的x的取值范围是(  )
A.(-2,4)B.(-3,3)C.(-4,2)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax+$\frac{b}{x}$的图象经过点A(1,1),B(2,-1).
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;
(3)求f(x)在区间[$\frac{1}{4}$,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=sin(ωx-$\frac{π}{6}$)-2cos2$\frac{ωx}{2}$+1(ω>0),直线y=$\sqrt{3}$与函数f(x)的图象相邻两交点的距离为π.
(1)求ω的值;
(2)在锐角△ABC中,内角A,B,C所对的边分别是a,b,c,若点($\frac{B}{2}$,0)是函数y=f(x)图象的一个对称中心,求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在R上定义运算?:x?y=x(1-y),若不等式(x-a)?(x+a)<1对于任意实数x均成立,则a的取值范围为(  )
A.(-$\frac{1}{2}$,$\frac{3}{2}$)B.[-$\frac{1}{2}$,$\frac{3}{2}$]C.(-$\frac{3}{2}$,$\frac{1}{2}$)D.[-$\frac{3}{2}$,$\frac{1}{2}$]

查看答案和解析>>

同步练习册答案