精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{{2}^{x}+m}{{2}^{x}-1}$为奇函数.
(1)求实数m的值;
(2)用定义证明函数f(x)在区间(0,+∞)上为单调减函数;
(3)若关于x的不等式f(x)+a<0对区间[1,3]上的任意实数x都成立,求实数a的取值范围.

分析 (1)根据函数的奇偶性求出m的值即可;
(2)根据函数单调性的定义证明即可;
(3)问题转化为a<-f(x)对区间[1,3]上的任意实数x都成立,求出f(x)的最大值,从而求出a的范围即可.

解答 (1)解:∵f(-x)=-f(x),
∴$\frac{{2}^{-x}+m}{{2}^{-x}-1}$=-$\frac{{2}^{x}+m}{{2}^{x}-1}$,
解得:m=1;
(2)证明:f(x)=1+$\frac{2}{{2}^{x}-1}$,
设0<x1<x2
∵f(x1)-f(x2)=$\frac{2}{{2x}_{1}-1}$-$\frac{2}{{2x}_{2}-1}$=$\frac{4{(x}_{2}{-x}_{1})}{({2x}_{1}-1)({2x}_{2}-1)}$,
又1<2x1<2x2,2x1-1>0,2x2-1>0,x2-x1>0,
∴$\frac{4{(x}_{2}{-x}_{1})}{({2x}_{1}-1)({2x}_{2}-1)}$>0,
∴f(x1)>f(x2),
∴函数f(x)在(0,+∞)递减;
(3)解:∵f(x)+a<0对区间[1,3]上的任意实数x都成立,
∴a<-f(x)对区间[1,3]上的任意实数x都成立,
∵f(x)在(0,+∞)递减,
∴f(x)在[1,3]递减,
∴f(x)的最大值是f(1)=3,
∴-f(x)的最小值是-3,
∴a<-3.

点评 本题考查了函数的奇偶性、单调性问题,考查函数恒成立问题以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax+$\frac{b}{x}$的图象经过点A(1,1),B(2,-1).
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;
(3)求f(x)在区间[$\frac{1}{4}$,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)对定义域R内的任意x都有f(2+x)=(2一x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x).若2<a<4,则f(log2a,f(2a),f(3)的大小关系为f(log2a)<f(3)<f(2a).(用“<”连接)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在R上定义运算?:x?y=x(1-y),若不等式(x-a)?(x+a)<1对于任意实数x均成立,则a的取值范围为(  )
A.(-$\frac{1}{2}$,$\frac{3}{2}$)B.[-$\frac{1}{2}$,$\frac{3}{2}$]C.(-$\frac{3}{2}$,$\frac{1}{2}$)D.[-$\frac{3}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的左、右焦点分别为F1,F2,其左准线为l0:x=-4,左顶点A,上顶点为B,且△BF1F2是等边三角形
(1)求椭圆C的方程
(2)过F1任意作一条直线l交椭圆C与M、N(均不是椭圆的顶点),设直线AM交l0于P,直线AN交l0于Q,试问判断$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$是否为定值,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在下列命题中,
①“α=$\frac{π}{2}$”是“sinα=1”的充要条件;  
②($\frac{{x}^{3}}{2}$+$\frac{1}{x}$)4的展开式中的常数项为2; 
③设随机变量ξ~N(0,1),若P(ξ≥1)=p,则P(-1<ξ<0)=$\frac{1}{2}$-p.
则其中所有正确命题的号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\sqrt{{{log}_{\frac{1}{2}}}cos(x+\frac{π}{4})}$的定义域为($-\frac{3π}{4}+2kπ$,$\frac{π}{4}+2kπ$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若数列{an}的前n项和Sn=n2(n∈N*),则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{10}{a}_{11}}$=(  )
A.$\frac{8}{17}$B.$\frac{9}{19}$C.$\frac{10}{21}$D.$\frac{11}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设△ABC内角A,B,C所对应的边分别为a,b,c,已知a2=b2+c2-bc.
(1)求角A的大小;
(2)若a=2$\sqrt{3}$,b=2,求cosC.

查看答案和解析>>

同步练习册答案