精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的左、右焦点分别为F1,F2,其左准线为l0:x=-4,左顶点A,上顶点为B,且△BF1F2是等边三角形
(1)求椭圆C的方程
(2)过F1任意作一条直线l交椭圆C与M、N(均不是椭圆的顶点),设直线AM交l0于P,直线AN交l0于Q,试问判断$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$是否为定值,并证明你的结论.

分析 (1)由椭圆的准线方程x=-$\frac{{a}^{2}}{c}$=-4,及a=2c,求得a和c,由b2=a2-c2=3,即可求得椭圆方程;
(2)设直线l:y=k(x+1),代入椭圆方程,由韦达定理可知x1+x2=$\frac{-8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,P(-4,xP),Q(-4,xQ),由(-2,0),(x1,y1),P共线,解得:xP=$\frac{-2{y}_{1}}{{x}_{1}+2}$,同理可得:xQ=$\frac{-2{y}_{2}}{{x}_{2}+2}$,则$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$=9+$\frac{4{y}_{1}{y}_{2}}{({x}_{1}+2)({x}_{2}+2)}$,代入即可求得$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$=0.

解答 解:(1)由题意可知:左准线x=-$\frac{{a}^{2}}{c}$=-4,
由△BF1F2是等边三角形,
∴a=2c,
解得:a=2,c=1,
由b2=a2-c2=3,
∴椭圆的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$是否为定值;
证明:由题意设直线l:y=k(x+1),M(x1,y1),N(x2,y2),
∴$\left\{\begin{array}{l}{y=k(x+1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2+8k2x-12=0,
则x1+x2=$\frac{-8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
设P(-4,xP),Q(-4,xQ),
(-2,0),(x1,y1),P共线,解得:xP=$\frac{-2{y}_{1}}{{x}_{1}+2}$,同理可得:xQ=$\frac{-2{y}_{2}}{{x}_{2}+2}$,
$\overrightarrow{{F}_{1}P}$=(-3,$\frac{-2{y}_{1}}{{x}_{1}+2}$),$\overrightarrow{{F}_{1}Q}$=(-3,$\frac{-2{y}_{2}}{{x}_{2}+2}$),
∴$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$=9+$\frac{4{y}_{1}{y}_{2}}{({x}_{1}+2)({x}_{2}+2)}$=9+$\frac{4{k}^{2}({x}_{1}+1)({x}_{2}+1)}{({x}_{1}+2)({x}_{2}+2)}$=9+4k2×$\frac{\frac{4{k}^{2}-12}{3+4{k}^{2}}+1-\frac{8{k}^{2}}{3+4{k}^{2}}}{\frac{4{k}^{2}-12}{3+4{k}^{2}}+4-\frac{16{k}^{2}}{3+4{k}^{2}}}$=9+4k2×$\frac{-9}{4{k}^{2}}$=0,
$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$=0.

点评 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标表示,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设f(x)是[0,1]上的不减函数,即对于0≤x1≤x2≤1有f(x1)≤f(x2),且满足(1)f(0)=0;(2)f($\frac{x}{3}$)=$\frac{1}{2}$f(x);(3)f(1-x)=1-f(x),则f($\frac{1}{2016}$)=(  )
A.$\frac{1}{3}$B.$\frac{1}{64}$C.$\frac{1}{128}$D.$\frac{1}{256}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在正方体ABCD-A1B1C1D1中,已知M、N分别为棱AD、BB1的中点.
(1)求证:直线MN∥平面AB1D1
(2)若正方体的棱长a=2,求点A1到面AB1D1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(1,3),\overrightarrow b=(-2,m)$,若对于任意的t∈R恒有$\overrightarrow a$与t•$\overrightarrow a+2\overrightarrow b$平行,则m的值为(  )
A.$\frac{2}{3}$B.6C.-6D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.作出下列函数的图象,并回答相关问题.
(1)在如图1中作出f(x)=2|x|的图象,奇偶性:偶函数;值域:[1,+∞);单调性:在(-∞,0]上减,在[0,+∞)上增.
(2)在如图2中作出f(x)=|log2x|的图象.奇偶性:非奇非偶函数;值域:[0,+∞);单调性:在(0,1]上减,在[1,+∞)上增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{2}^{x}+m}{{2}^{x}-1}$为奇函数.
(1)求实数m的值;
(2)用定义证明函数f(x)在区间(0,+∞)上为单调减函数;
(3)若关于x的不等式f(x)+a<0对区间[1,3]上的任意实数x都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下面类比推理:
①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;
②“(a+b)c=ac+bc(c≠0)”类比推出“$\frac{a+b}{c}$=$\frac{a}{c}$+$\frac{b}{c}$(c≠0)”;
③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;
④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.
其中结论正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{{a}_{n+1}}$(n∈N*
(Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an
(Ⅱ)求数列{n2an}的前n项和Tn
(Ⅲ)对任意n∈N*,使得$\frac{n}{{{3}^{n-1}}}{{a}_{n+1}}$≤(n+6)λ 恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=$\frac{3-{i}^{2015}}{1+i}$的共轭复数$\overline{z}$等于(  )
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

同步练习册答案