精英家教网 > 高中数学 > 题目详情
10.设f(x)是[0,1]上的不减函数,即对于0≤x1≤x2≤1有f(x1)≤f(x2),且满足(1)f(0)=0;(2)f($\frac{x}{3}$)=$\frac{1}{2}$f(x);(3)f(1-x)=1-f(x),则f($\frac{1}{2016}$)=(  )
A.$\frac{1}{3}$B.$\frac{1}{64}$C.$\frac{1}{128}$D.$\frac{1}{256}$

分析 根据条件关系f($\frac{x}{3}$)=$\frac{1}{2}$f(x),f(1-x)=1-f(x),依次进行递推,得到当$\frac{1}{2187}$≤x≤$\frac{2}{2187}$时,f(x)=$\frac{1}{128}$,即可得到结论.

解答 解:∵(1)f(0)=0;(2)f($\frac{x}{3}$)=$\frac{1}{2}$f(x);(3)f(1-x)=1-f(x),
∴f(1)=1-f(0)=1,
f($\frac{1}{3}$)=$\frac{1}{2}$f(1)=$\frac{1}{2}$,f(1-$\frac{1}{3}$)=1-f($\frac{1}{3}$).即f($\frac{2}{3}$)=1-$\frac{1}{2}$=$\frac{1}{2}$,
f($\frac{1}{9}$)=$\frac{1}{2}$f($\frac{1}{3}$)=$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{4}$,f($\frac{2}{9}$)=$\frac{1}{2}$f($\frac{2}{3}$)=$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{4}$
f($\frac{1}{27}$)=$\frac{1}{2}$f($\frac{1}{9}$)=$\frac{1}{2}$×$\frac{1}{4}$=$\frac{1}{8}$,f($\frac{2}{27}$)=$\frac{1}{2}$f($\frac{2}{9}$)=$\frac{1}{2}$×$\frac{1}{4}$=$\frac{1}{8}$,
f($\frac{1}{81}$)=$\frac{1}{2}$f($\frac{1}{27}$)=$\frac{1}{2}$×$\frac{1}{8}$=$\frac{1}{16}$,f($\frac{2}{81}$)=$\frac{1}{2}$f($\frac{2}{27}$)=$\frac{1}{2}$×$\frac{1}{8}$=$\frac{1}{16}$,
f($\frac{1}{243}$)=$\frac{1}{2}$f($\frac{1}{81}$)=$\frac{1}{2}$×$\frac{1}{16}$=$\frac{1}{32}$,f($\frac{2}{243}$)=$\frac{1}{2}$f($\frac{2}{81}$)=$\frac{1}{2}$×$\frac{1}{16}$=$\frac{1}{32}$,
f($\frac{1}{729}$)=$\frac{1}{2}$f($\frac{1}{243}$)=$\frac{1}{2}$×$\frac{1}{32}$=$\frac{1}{64}$,f($\frac{2}{729}$)=$\frac{1}{2}$f($\frac{2}{243}$)=$\frac{1}{2}$×$\frac{1}{32}$=$\frac{1}{64}$,
f($\frac{1}{2187}$)=$\frac{1}{2}$f($\frac{1}{729}$)=$\frac{1}{2}$×$\frac{1}{64}$=$\frac{1}{128}$,f($\frac{2}{2187}$)=$\frac{1}{2}$f($\frac{2}{729}$)=$\frac{1}{2}$×$\frac{1}{64}$=$\frac{1}{128}$,
∵对于0≤x1≤x2≤1有f(x1)≤f(x2),
∴当$\frac{1}{2187}$≤x≤$\frac{2}{2187}$时,f(x)=$\frac{1}{128}$,
∵$\frac{1}{2016}$∈[$\frac{1}{2187}$,$\frac{2}{2187}$]时,∴f($\frac{1}{2016}$)=$\frac{1}{128}$,
故选:C.

点评 本题考查了抽象函数的应用,赋值计算给定的函数值,注意观察转化.考查学生的计算和推理能力,综合性较强有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知f(x)=3-2|x|,g(x)=x2-2x,F(x)=$\left\{\begin{array}{l}{g(x),若f(x)≥g(x)}\\{f(x),若f(x)<g(x)}\end{array}\right.$,则F(x)的最值是(  )
A.最大值为3,最小值为-1B.最大值为3,无最小值
C.最大值为7-2$\sqrt{7}$,无最小值D.既无最大值,又无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列各数中,最小的数是④
?①75?②85(9)  ③210(6)    ④111111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.集合A={x|y=$\frac{12}{x+3}$,x∈N,y∈Z},则A={0,1,3,9}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由抛物线y=x2-1,直线x=0,x=2及x轴围成的图形面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax+$\frac{b}{x}$的图象经过点A(1,1),B(2,-1).
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;
(3)求f(x)在区间[$\frac{1}{4}$,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{{\sqrt{x}}}{ln(2-x)}$的定义域为(  )
A.[0,1)B.[0,2)C.(1,2)D.[0,1)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.焦点在x轴上的椭圆的长轴长等于4,离心率等于$\frac{{\sqrt{3}}}{2}$,则该椭圆的标准方程为(  )
A.$\frac{x^2}{2}+{y^2}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{4}+\frac{y^2}{3}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的左、右焦点分别为F1,F2,其左准线为l0:x=-4,左顶点A,上顶点为B,且△BF1F2是等边三角形
(1)求椭圆C的方程
(2)过F1任意作一条直线l交椭圆C与M、N(均不是椭圆的顶点),设直线AM交l0于P,直线AN交l0于Q,试问判断$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$是否为定值,并证明你的结论.

查看答案和解析>>

同步练习册答案