精英家教网 > 高中数学 > 题目详情
17.已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{{a}_{n+1}}$(n∈N*
(Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an
(Ⅱ)求数列{n2an}的前n项和Tn
(Ⅲ)对任意n∈N*,使得$\frac{n}{{{3}^{n-1}}}{{a}_{n+1}}$≤(n+6)λ 恒成立,求实数λ的最小值.

分析 (Ⅰ)由已知数列递推式可得a1+2a2+3a3+…+(n-1)an-1=$\frac{n}{2}{a}_{n}$(n≥2),与原递推式作差可得当n≥2时,数列{nan}是等比数列,再由等比数列的通项公式求得
数列{an}的通项an
(Ⅱ)把数列{an}的通项an代入n2an,利用错位相减法数列{n2an}的前n项和Tn
(Ⅲ)把an+1 代入$\frac{n}{{{3}^{n-1}}}{{a}_{n+1}}$≤(n+6)λ,分离参数λ,由函数的单调性求出最值得答案.

解答 (Ⅰ)证明:由a1+2a2+3a3+…+nan=$\frac{n+1}{2}{{a}_{n+1}}$,
得a1+2a2+3a3+…+(n-1)an-1=$\frac{n}{2}{a}_{n}$(n≥2),
①-②:$n{a}_{n}=\frac{n+1}{2}{a}_{n+1}-\frac{n}{2}{a}_{n}$,即$\frac{(n+1){a}_{n+1}}{n{a}_{n}}=3$(n≥2),
∴当n≥2时,数列{nan}是等比数列,
又a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{{a}_{n+1}}$,得a2=1,
则2a2=2,∴$n{a}_{n}=2×{3}^{n-2}$,
∴${a}_{n}=\frac{2}{n}×{3}^{n-2}$(n≥2),
∴${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{\frac{2}{n}×{3}^{n-2},n≥2}\end{array}\right.$;
(Ⅱ)解:由(Ⅰ)可知${n}^{2}{a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{2n×{3}^{n-2},n≥2}\end{array}\right.$,
∴Tn=1+2×2×30+2×3×31+2×4×32+…+2n×3n-2
则$3{T}_{n}=3+2×2×{3}^{1}+2×3×{3}^{2}+…+2n×{3}^{n-1}$,
两式作差得:$-2{T}_{n}=2+2({3}^{1}+{3}^{2}+…+{3}^{n-2})-2n×{3}^{n-1}$,
得:${T}_{n}=(n-1)•{3}^{n-1}+\frac{1}{2}$;
(Ⅲ)解:由$\frac{n}{{{3}^{n-1}}}{{a}_{n+1}}$≤(n+6)λ,得$\frac{n}{{3}^{n-1}}•\frac{2•{3}^{n-1}}{n+1}$≤(n+6)λ,
即$λ≥\frac{2n}{(n+1)(n+6)}=\frac{2n}{{{n}^{2}}+7n+6}=\frac{2}{n+\frac{6}{n}+7}$对任意n∈N*恒成立.
当n=2或n=3时$n+\frac{6}{n}$有最小值为5,$\frac{2}{n+\frac{6}{n}+7}$有最大值为$\frac{2}{5+7}=\frac{1}{6}$,
故有$λ≥\frac{1}{6}$,
∴实数λ的最小值为$\frac{1}{6}$.

点评 本题考查数列递推式,考查了作差法求数列的通项公式,训练了错位相减法求数列的前n项和,训练了利用分离变量法求变量的最值问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.焦点在x轴上的椭圆的长轴长等于4,离心率等于$\frac{{\sqrt{3}}}{2}$,则该椭圆的标准方程为(  )
A.$\frac{x^2}{2}+{y^2}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{4}+\frac{y^2}{3}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的左、右焦点分别为F1,F2,其左准线为l0:x=-4,左顶点A,上顶点为B,且△BF1F2是等边三角形
(1)求椭圆C的方程
(2)过F1任意作一条直线l交椭圆C与M、N(均不是椭圆的顶点),设直线AM交l0于P,直线AN交l0于Q,试问判断$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$是否为定值,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\sqrt{{{log}_{\frac{1}{2}}}cos(x+\frac{π}{4})}$的定义域为($-\frac{3π}{4}+2kπ$,$\frac{π}{4}+2kπ$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.f(x)=ax3-6ax2+b,x∈[-1,2]的最大值为3,最小值为-29,则a+b的值为5或-31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若数列{an}的前n项和Sn=n2(n∈N*),则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{10}{a}_{11}}$=(  )
A.$\frac{8}{17}$B.$\frac{9}{19}$C.$\frac{10}{21}$D.$\frac{11}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x的不等式ax2+bx+2>0的解集是{x|x<-2或x>-1},则a+b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数f(x)=$\sqrt{2}$sinxcosx-$\sqrt{2}$cos2x+$\frac{\sqrt{2}}{2}$的图象向左平移φ(φ>0)个单位长度后与偶函数g(x)的图象重合,当φ取最小值时,函数g(x)的对称轴方程为(  )
A.x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈ZB.x=km,k∈ZC.x=km+$\frac{π}{2}$,k∈ZD.x=$\frac{kπ}{2}$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式2x2-5x-3≥0成立的一个必要不充分条件是(  )
A.x≥0B.x<0或x>2C.x<-$\frac{1}{2}$D.x≤-$\frac{1}{2}$或x≥3

查看答案和解析>>

同步练习册答案