精英家教网 > 高中数学 > 题目详情
8、关于函数f(x)=2x-2-x(x∈R)有下列三个结论:①f(x)的值域为R;②f(x)是R上的增函数;③对任意x∈R,有f(-x)+f(x)=0成立;其中所有正确的序号为(  )
分析:先判定函数的单调性,利用增函数与减函数作差为增函数进行判定②的真假,然后根据单调性求函数的值域可判定①的真假,③是考查函数的奇偶性的,要判断是否关于原点对称,须看是否为奇函数,须用定义
解答:解:因为y=2x在R上是增函数,且y=2-x在R上是减函数,所以f(x)=2x-2-x在R上是增函数,所以②对,
f(x)=2x-2-x在R上是增函数当x→-∞则y→-∞,当x→+∞则y→+∞,则f(x)的值域为R,所以①对
因为f(x)=2x-2-x,故f(-x)=2-x-2x=-f(x),则f(x)为奇函数,对任意x∈R,有f(-x)+f(x)=0成立,所以③对,
故正确的结论是①②③.
故选D
点评:本题主要考查了指数函数的单调性与特殊点,以及指数函数的图象与性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列关于函数f(x)=(2x-x2)ex的判断正确的是(  )
①f(x)>0的解集是{x|0<x<2};
②f(-
2
)是极小值,f(
2
)是极大值;
③f(x)没有最小值,也没有最大值.
A、①③B、①②③C、②D、①②

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是R,对任意x∈R,f(x+2)-f(x)=0,当x∈[-1,1)时,f(x)=x.关于函数f(x)给出下列四个命题:
①函数f(x)是奇函数;
②函数f(x)是周期函数;
③函数f(x)的全部零点为x=2k,k∈Z;
④当x∈[-3,3)时,函数g(x)=
1x
的图象与函数f(x)的图象有且只有三个公共点.
其中全部真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列关于函数f(x)=x3-3x2+1(x∈R)的性质叙述错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=2(sinx-cosx)cosx的四个结论:
P1:最大值为
2

P2:最小正周期为π;
P3:单调递增区间为[kπ-
π
8
,kπ+
3
8
π],k∈
Z;
P4:图象的对称中心为(
k
2
π+
π
8
,-1),k∈
Z.
其中正确的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=2x-2-x有下列三个结论;①函数f(x)的值域为R;②函数f(x)是R上的增函数;③对任意的x∈R都有f(x)+f(-x)=0成立.其中正确命题的序号是
①②③
①②③

查看答案和解析>>

同步练习册答案