精英家教网 > 高中数学 > 题目详情
f(x)=
2-x,x≤1
log2x+
1
2
,x>1
,若f(a)≤
1
2
,则实数a应满足(  )
分析:由题意,当x=1时,函数f(x)取得最小值
1
2
,从而可求实数a的值.
解答:解:由题意,当x=1时,函数f(x)取得最小值
1
2
,故实数a的取值只有一个,即a=1.
故选A.
点评:本题考查了分段函数、函数的最值的求法,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
2-x+a
1+x
(a为实常数),y=g(x)与y=e-x的图象关于y轴对称.
(1)若函数y=f[g(x)]为奇函数,求a的取值.
(2)当a=0时,若关于x的方程f[g(x)]=
g(x)
m
有两个不等实根,求m的范围;
(3)当|a|<1时,求方程f(x)=g(x)的实数根个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当x∈[-
π
6
π
3
]时,函数f(x)的最大值与最小值的和为
3
2
,求f(x)的解析式;
(Ⅲ)将满足(Ⅱ)的函数f(x)的图象向右平移
π
12
个单位,纵坐标不变横坐标变为原来的2倍,再向下平移
1
2
,得到函数g(x),求g(x)图象与x轴的正半轴、直线x=
π
2
所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)(x∈R)有下列命题:
(1)在同一坐标系中,y=f(x-1)与y=f(-x+1)的图象关于直线x=-1对称;
(2)若f(2-x)=f(x),则函数y=f(x)的图象关于直线x=1对称;
(3)若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期;
(4)若f(2-x)=-f(x),则函数y=f(x)的图象关于(1,0)对称.其中正确命题的序号是
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案