精英家教网 > 高中数学 > 题目详情
19.45和80的等比中项为±60.

分析 直接利用等比中项的概念列式求值.

解答 解:设45和80的等比中项为x,
则由等比中项的概念得:x2=45×80=3600,
∴x=±60.
故答案为:±60.

点评 本题考查等比数列的通项公式,考查了等比中项的概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列函数中x=0是极值点的函数是(  )
A.f(x)=-x3B.f(x)=x2C.f(x)=sinx-xD.f(x)=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,A,B是单位圆O上的点,且B在第二象限,C是圆与x轴正半轴的交点,A点的坐标为($\frac{3}{5}$,$\frac{4}{5}$),且A与B关于y轴对称.
(1)求sin∠COA; 
(2)求cos∠COB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知{an}为等比数列,若a1+a4=8,a3+a6=2,则公比q的值为(  )
A.±2B.$±\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某高中地处市区,学校规定家到学校的路程在10里以内的学生可以走读,因交通便利,所以走读生人数很多.该校学生会先后5次对走读生的午休情况作了统计,得到如下资料:
①若把家到学校的距离分为五个区间:[0,2)、[2,4)、[4,6)、[6,8)、[8,10),午休的走读生的分布情况如频率分布直方图所示;
②走读生是否午休与下午开始上课的时间有着密切的关系. 5次调查结果的统计表如表:
下午开始
上课时间
2:102:202:302:402:50
平均每天
午休人数
250350500650750
(1)若随机地调查一位午休的走读生,估计家到学校的路程(单位:里)在[2,6)的概率是多少?
(2)如果把下午开始上课时间2:10作为横坐标0,然后上课时间每推迟10分钟,横坐标x增加1,并以平均每天午休人数作为纵坐标y,试列出x与y的统计表,并根据表中的数据求平均每天午休人数$\widehat{y}$与上课时间x之间的线性回归方程$\widehat{y}$=bx+a;
(3)预测当下午上课时间推迟到3:00时,家距学校的路程在6里路以上的走读生中约有多少人午休?
(注:线性回归直线方程系数公式b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等比数列{an}的前n项和为Sn,且满足S7=2,S14=6,则S21等于14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有一段演绎推理是这样的:“因为一次函数y=kx+b(k≠0)在R上是增函数,而y=-x+2是一次函数,所以y=-x+2在R上是增函数”的结论显然是错误,这是因为(  )
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.四个人从左到右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有(  )
A.12B.10C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知两个复数的和是实数,则这两个复数(  )
A.都是实数B.互为共轭复数
C.都是实数或互为共轭复数D.以上都不对

查看答案和解析>>

同步练习册答案