精英家教网 > 高中数学 > 题目详情
8.四个人从左到右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有(  )
A.12B.10C.8D.6

分析 若最左端排甲,若最左端排乙,根据分类计数原理可得.

解答 解:若最左端排甲,则有A33=6种,
若最左端排乙,则有A21A21=4种,
根据分类计数原理,共有6+4=10,
故选:B

点评 本题考查了分类计数原理,关键是分类,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数y=x3-2ax+a在(1,2)内有极小值,则实数a的取值范围是(  )
A.(0,$\frac{3}{2}$)B.(0,3)C.($\frac{3}{2}$,6)D.(0,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.45和80的等比中项为±60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出下列命题:其中正确命题的序号是①③ (把你认为正确的序号都填上)
①函数f(x)=4cos(2x+$\frac{π}{3}$)的一个对称中心为(-$\frac{5π}{12}$,0);
②若α,β为第一象限角,且α>β,则tanα>tanβ;
③若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则存在实数λ,使得$\overrightarrow{b}$=λ$\overrightarrow{a}$;
④点O是三角形ABC所在平面内一点,且满足$\overrightarrow{OA}•\overrightarrow{OB}=\overrightarrow{OB}•\overrightarrow{OC}=\overrightarrow{OC}•\overrightarrow{OA}$,则点O是三角形ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知p:-4<x-a<4,q:(x-1)(2-x)>0,若¬p是¬q的充分条件,则实数a的取值范围是[-2,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据条件计算
(Ⅰ)已知第二象限角α满足sinα=$\frac{1}{3}$,求cosα的值;
(Ⅱ)已知tanα=2,求$\frac{4cosα+sinα}{3cosα-2sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.2log416-3log327=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=$\frac{π}{12}$时取最大值2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1-x2|的最小值为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)若f(α)=$\frac{2}{3}$,α∈($\frac{π}{12}$,$\frac{π}{3}$),求sin($\frac{π}{6}$-2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的通项公式为an=$\frac{2}{(n+1)(n+2)}$,则其前n项的和Sn=$\frac{n}{n+2}$.

查看答案和解析>>

同步练习册答案