精英家教网 > 高中数学 > 题目详情
18.已知数列{an}的通项公式为an=$\frac{2}{(n+1)(n+2)}$,则其前n项的和Sn=$\frac{n}{n+2}$.

分析 利用裂项法可得an=2($\frac{1}{n+1}$-$\frac{1}{n+2}$),从而可得其前n项的和Sn的值.

解答 解:∵an=$\frac{2}{(n+1)(n+2)}$=2($\frac{1}{n+1}$-$\frac{1}{n+2}$),
∴Sn=a1+a2+…+an=2[($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n+1}$-$\frac{1}{n+2}$)]
=2($\frac{1}{2}$-$\frac{1}{n+2}$)=1-$\frac{2}{n+2}$=$\frac{n}{n+2}$.
故答案为:$\frac{n}{n+2}$.

点评 本题考查数列的求和,着重考查裂项法的应用,得到an=2($\frac{1}{n+1}$-$\frac{1}{n+2}$)是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.四个人从左到右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有(  )
A.12B.10C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知两个复数的和是实数,则这两个复数(  )
A.都是实数B.互为共轭复数
C.都是实数或互为共轭复数D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\vec a$=(m,1),$\vec b$=(2,-2),若$\vec a$⊥$\vec b$,则m的值是(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,与函数y=-2|x|的奇偶性相同,且在(-∞,0)上单调性也相同的是(  )
A.$y=-\frac{1}{x}$B.y=log3|x|C.y=1-x2D.y=x3-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为$\frac{3}{5}$和$\frac{2}{3}$,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(1)求只有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获利润50万元,若新产品B研发成功,预计企业可获利润60万元,求该企业可获利润的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知实数x,y满足$\left\{\begin{array}{l}{x+y≥3}\\{y≤x+1}\\{y≤-3x+9}\end{array}\right.$,试求解下列问题:
(1)求目标函数z=3x+y的最大值,此时对应的最优解有多少个?
(2)若目标函数z=ax+y取得最大值时对应的最优解有无数个,求实数a的值.
(3)若目标函数z=ax+y仅在B(2,3)处取得最大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知射手甲射击一次,击中目标的概率是$\frac{2}{3}$.
(Ⅰ)若甲射击5次,其击中目标的次数记为X,求X的期望和方差;
(Ⅱ)假设甲连续2次未击中目标,或者射击次数达到五次,则中止其射击.甲停止射击时已经射击的次数记为Y,求Y的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设i是虚数单位,则|1-i-$\frac{2}{i}}$|等于$\sqrt{2}$.

查看答案和解析>>

同步练习册答案