精英家教网 > 高中数学 > 题目详情
4.M为何值时,直线2x-y+m=0与圆x2+y2=5
(1)无公共点;
(2)截得弦长为2.

分析 (1)求出圆x2+y2=5圆心到直线2x-y+m=0的距离d,由直线与圆无公共点,得d>r,由此能求出m的取值范围.
(2)由平面几何垂径定理得到r2-d2=12,由此能求出直线被圆截得的弦长为2的m值.

解答 解:(1)∵圆x2+y2=5圆心为O(0,0),半径r=$\sqrt{5}$,圆心到直线2x-y+m=0的距离d=$\frac{|m|}{\sqrt{4+1}}$=$\frac{|m|}{\sqrt{5}}$,
∵直线与圆无公共点,∴d>r,即$\frac{|m|}{\sqrt{5}}$>$\sqrt{5}$,
∴m>5或m<-5.
故当m>5或m<-5时,直线与圆无公共点.
(2)如图所示,由平面几何垂径定理知
r2-d2=12,即5-$\frac{{m}^{2}}{5}$=1.
得m=±2$\sqrt{5}$,
∴当m=±2$\sqrt{5}$时,直线被圆截得的弦长为2.

点评 本题考查实数值的取值范围的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列各组函数中,f(x)与g(x)是同一函数的是(  )
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=x,g(x)=2${\;}^{lo{g}_{2}x}$
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=x,g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A、B、C所对的边分别为a、b、c,|$\overrightarrow{AB}$|=5,20a$\overrightarrow{BC}$+15b$\overrightarrow{CA}$+12c$\overrightarrow{AB}$=$\overrightarrow{0}$,$\overrightarrow{BP}$=2$\overrightarrow{PA}$,则$\overrightarrow{CP}$$•\overrightarrow{AB}$的值为(  )
A.$\frac{23}{3}$B.-$\frac{7}{2}$C.-$\frac{23}{3}$D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x+y≤3}\\{x+y≥2}\\{x≥0,y≥0}\end{array}\right.$,若z=-2x-y,则z的最小值为(  )
A.-3B.3C.-4D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线l:y=k(x+2)被圆O:x2+y2=4截得弦长为2,则k值是±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(2x-1)($\frac{1}{x}$+2x)6的展开式中含x7的项的系数是128.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正四棱锥的所有棱长都相等,那么该四棱锥的内切球与外接球的表面积之比为(  )
A.$\frac{1}{4}$B.$\frac{4}{9}$C.$\frac{\sqrt{3}-1}{2}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{tan(-α-π)sin(π+α)sin(\frac{π}{2}+α)}{cos(-α)cos(α-\frac{π}{2})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sin(π-α)=$\frac{4}{5}$,α∈(0,$\frac{π}{2}$),cos($\frac{π}{2}$+β)=-$\frac{3}{5}$,β∈(0,$\frac{π}{2}$),求:
(1)α+β的值;
(2)sin2α+cos2β的值.

查看答案和解析>>

同步练习册答案