精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为,( 为参数).直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的直角坐标为,求的值.

【答案】(1) 曲线的直角坐标方程为,直线的普通方程为.(2)

【解析】

(1)由极坐标与普通方程互化,参数方程与普通方程互化直接求解即可;(2)将直线的参数方程代入,由韦达定理结合t的几何意义即可求解

(1)由,得

所以曲线的直角坐标方程为,即

由直线的参数方程得直线的普通方程为.

(2)将直线的参数方程代入

化简并整理,得.

因为直线与曲线分别交于两点,所以

解得,由一元二次方程根与系数的关系,得

又因为,所以.

因为点的直角坐标为,且在直线上,

所以

解得,此时满足,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高二名学生的体能情况,随机抽查部分学生,测试分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是( )

A.该校高二学生分钟仰卧起坐的次数超过次的人数约有

B.该校高二学生分钟仰卧起坐的次数少于次的人数约有

C.该校高二学生分钟仰卧起坐的次数的中位数为

D.该校高二学生分钟仰卧起坐的次数的众数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程及曲线的直角坐标方程;

(2)设点,直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,四个点中有3个点在椭圆.

1)求椭圆的标准方程;

2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线轴、轴分别交于两点,设直线的斜率分别为,证明:存在常数使得,并求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形中,的中点,线段交于点(如图1.沿折起到的位置,使得二面角为直二面角(如图2.

1)求证:平面

2)线段上是否存在点,使得与平面所成角的正弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障的概率为.已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元.该工厂每月需支付给每名维修工人万元的工资.

(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有名维修工人,求工厂每月能正常运行的概率;

(2)已知该厂现有名维修工人.

(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;

(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?

查看答案和解析>>

同步练习册答案