精英家教网 > 高中数学 > 题目详情
若函数在区间上单调递减,则实数的取值范围为______.

试题分析:将函数化成分段函数的形式,不难得到它的减区间为(2,3).结合题意得:(5a,4a+1)⊆(2,3),由此建立不等关系,解之即可得到实数a的取值范围.解:函数f(x)=|x-2|(x-4)
="(x-2)(x-4)" (x≥2)
(2-x)(x-4) (x<2)

∴函数的增区间为(-∞,2)和(3,+∞),减区间是(2,3).∵在区间(5a,4a+1)上单调递减,∴(5a,4a+1)⊆(2,3),得2≤5a, 4a+1≤3,解之得≤a≤
故答案为:
点评:本题给出含有绝对值的函数,在已知减区间的情况下求参数a的取值范围,着重考查了函数的单调性和单调区间求法等知识,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若函数是增函数,则a的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是奇函数,且在区间上是单调增函数,又,则的解集为                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的一个单调递增区间是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的值域是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)写出函数的定义域;(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数上的最大值和最小值分别是     (   )  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若时,取得极值,求实数的值;   
(2)求上的最小值;
(3)若对任意,直线都不是曲线的切线,求实数的取值范围.

查看答案和解析>>

同步练习册答案