精英家教网 > 高中数学 > 题目详情
设函数
(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.
(Ⅰ) 无极大值.
(Ⅱ)当时,上是减函数;
时,单调递减,在上单调递增;
时,单调递减,在上单调递增;
(Ⅲ) 

试题分析:(Ⅰ)函数的定义域为.  
时,2分
时,时, 无极大值. 4分
(Ⅱ) 
5分
,即时, 在定义域上是减函数;
,即时,令
,即时,令
      综上,当时,上是减函数;
时,单调递减,在上单调递增;
时,单调递减,在上单调递增;8分
(Ⅲ)由(Ⅱ)知,当时,上单减,是最大值, 是最小值.
  10分

经整理得,由,所以12分
点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。涉及不等式恒成立问题,转化成了研究函数的最值之间的差,从而利用“分离参数法”又转化成函数的最值问题。涉及对数函数,要特别注意函数的定义域。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

函数,若关于的方程有三个不同实根,则的取值范围是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnxg(x)=k·.
(I)求函数F(x)= f(x)- g(x)的单调区间;
(Ⅱ)当x>1时,函数f(x)> g(x)恒成立,求实数k的取值范围;
(Ⅲ)设正实数a1a2a3,,an满足a1+a2+a3++an=1,
求证:ln(1+)+ln(1+)++ln(1+)>

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在区间上单调递减,则实数的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,,则,,从小到大的顺序为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)求函数的单调区间;
(II)若函数上是减函数,求实数的最小值;
(III)若,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=1,求函数f(x)在区间[1,e]上的最大值;
(Ⅱ)若f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,矩形纸板ABCD的顶点AB分别在正方形边框EOFG的边OEOF上,当点BOF边上进行左右运动时,点A随之在OE上进行上下运动.若AB=8,BC=3,运动过程中,则点D到点O距离的最大值为
A.B.9C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若的图象恰有两个交点,求实数的取值范围。

查看答案和解析>>

同步练习册答案