分析 若椭圆的焦点在x轴,可设出椭圆标准方程,并得到c,再由长轴长是短轴长的3倍可得a=3b,结合隐含条件a2=b2+c2求得a,b的值,则椭圆方程可求,若椭圆的焦点在y轴,同理可得椭圆方程.
解答 解:若椭圆的焦点在x轴,可设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),且2c=8,即c=4.
又2a=6b,∴a=3b,
结合a2=b2+c2,得9b2=b2+16,∴b2=2,
则a2=9b2=18.
∴椭圆标准方程为$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{2}=1$.
若椭圆的焦点在y轴,同理可得$\frac{{y}^{2}}{18}+\frac{{x}^{2}}{2}=1$.
故答案为:$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{2}=1$或$\frac{{y}^{2}}{18}+\frac{{x}^{2}}{2}=1$.
点评 本题考查了椭圆标准方程的求法,考查了椭圆的简单几何性质,考查分类讨论思想,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3,4,5} | B. | {1,2,3,4,5,6} | C. | {1,3,6} | D. | {3,4,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{3}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4096}{9}$ | B. | $\frac{1280}{9}$ | C. | $\frac{320}{9}$ | D. | $\frac{256}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com